論文の概要: Addressing Class Imbalance with Probabilistic Graphical Models and Variational Inference
- arxiv url: http://arxiv.org/abs/2504.05758v1
- Date: Tue, 08 Apr 2025 07:38:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-16 23:42:56.565731
- Title: Addressing Class Imbalance with Probabilistic Graphical Models and Variational Inference
- Title(参考訳): 確率的図形モデルと変分推論によるクラス不均衡の解消
- Authors: Yujia Lou, Jie Liu, Yuan Sheng, Jiawei Wang, Yiwei Zhang, Yaokun Ren,
- Abstract要約: 本研究では,深い確率的グラフィカルモデル(DPGM)に基づく不均衡データ分類手法を提案する。
本稿では,少数クラスの表現能力を適応的に調整できる変分推論最適化確率モデルを提案する。
逆学習機構を組み合わさって、潜在空間におけるマイノリティクラスサンプルを生成し、モデルがカテゴリ境界をより正確に特徴づけられるようにします。
- 参考スコア(独自算出の注目度): 10.457756074328664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes a method for imbalanced data classification based on deep probabilistic graphical models (DPGMs) to solve the problem that traditional methods have insufficient learning ability for minority class samples. To address the classification bias caused by class imbalance, we introduce variational inference optimization probability modeling, which enables the model to adaptively adjust the representation ability of minority classes and combines the class-aware weight adjustment strategy to enhance the classifier's sensitivity to minority classes. In addition, we combine the adversarial learning mechanism to generate minority class samples in the latent space so that the model can better characterize the category boundary in the high-dimensional feature space. The experiment is evaluated on the Kaggle "Credit Card Fraud Detection" dataset and compared with a variety of advanced imbalanced classification methods (such as GAN-based sampling, BRF, XGBoost-Cost Sensitive, SAAD, HAN). The results show that the method in this study has achieved the best performance in AUC, Precision, Recall and F1-score indicators, effectively improving the recognition rate of minority classes and reducing the false alarm rate. This method can be widely used in imbalanced classification tasks such as financial fraud detection, medical diagnosis, and anomaly detection, providing a new solution for related research.
- Abstract(参考訳): 本研究では,従来の手法がマイノリティクラスサンプルに対して不十分な学習能力を有するという問題を解決するために,DPGM(Deep Probabilistic Graphography Model)に基づく不均衡データ分類手法を提案する。
クラス不均衡に起因する分類バイアスに対処するため,少数クラスの表現能力を適応的に調整できる変分推論最適化確率モデルを導入し,クラス対応の重み調整戦略を組み合わせてマイノリティクラスに対する分類器の感度を高める。
さらに、逆学習機構を組み合わさって、潜在空間における少数クラスサンプルを生成し、高次元特徴空間におけるカテゴリ境界をより正確に表現できるようにする。
この実験は、Kaggle "Credit Card Fraud Detection"データセットで評価され、様々な高度な不均衡分類手法(GANベースのサンプリング、BRF、XGBoost-Cost Sensitive、SAAD、HANなど)と比較される。
その結果,本手法はAUC,精度,リコール,F1スコアの指標において最高の性能を示し,マイノリティクラスの認識率を効果的に向上させ,誤警報率を低減した。
この方法は、金融不正検出、診断、異常検出などの不均衡な分類タスクに広く利用でき、関連する研究の新たな解決策を提供する。
関連論文リスト
- A Structured Reasoning Framework for Unbalanced Data Classification Using Probabilistic Models [1.6951945839990796]
本稿では,不均衡データに対するマルコフネットワークモデルについて検討し,分類バイアスとマイノリティクラス認識能力不足の問題を解くことを目的とした。
実験の結果,マルコフネットワークは重み付け精度,F1スコア,AUC-ROCなどの指標で良好に動作することがわかった。
将来の研究は、大規模不均衡なデータ環境における効率的なモデルトレーニング、構造最適化、ディープラーニングの統合に焦点を当てることができる。
論文 参考訳(メタデータ) (2025-02-05T17:20:47Z) - Systematic Evaluation of Synthetic Data Augmentation for Multi-class NetFlow Traffic [2.5182419298876857]
マルチクラス分類モデルは特定のタイプの攻撃を識別し、より標的的で効果的なインシデント応答を可能にする。
最近の進歩は、生成モデルがデータの増大を補助し、不均衡なデータセットに対して優れたソリューションを提供すると主張することを示唆している。
本実験は,トレーニングデータのバランスをとる再サンプリング手法が,分類性能を確実に向上させるものではないことを示唆している。
論文 参考訳(メタデータ) (2024-08-28T12:44:07Z) - An Adaptive Cost-Sensitive Learning and Recursive Denoising Framework for Imbalanced SVM Classification [12.986535715303331]
カテゴリー不均衡は、分類分野において最も人気があり重要な問題の一つである。
適応的なコスト感度と再帰に基づく頑健な学習アルゴリズムを提案する。
実験の結果,提案手法は従来の精度,G平均,リコール,F1スコアの手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-03-13T09:43:14Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
クラス増分学習は,限定された新規クラスサンプルを用いて,新規クラスを継続的に認識することを目的としている。
最近の手法では,段階的なセッションで特徴抽出器を微調整することにより,ベースクラスとインクリメンタルクラスの精度の不均衡を緩和している。
本研究では,FSCIL問題におけるモデルバイアスを緩和する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-01T10:37:41Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
そこで本研究では,データ依存型コンダクタンス(Data-dependent contraction)と呼ばれる手法を提案する。
この技術に加えて、不均衡学習のための微粒な一般化境界が確立され、再重み付けとロジット調整の謎を明らかにするのに役立つ。
論文 参考訳(メタデータ) (2023-10-07T09:15:08Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Class-Imbalanced Graph Learning without Class Rebalancing [62.1368829847041]
クラス不均衡は実世界のノード分類タスクでよく見られ、グラフ学習モデルには大きな課題がある。
本研究では、トポロジカルパラダイムからクラス不均衡バイアスの根本原因にアプローチする。
我々は,クラス再バランスを伴わずにクラス不均衡バイアスを軽減するために,軽量なトポロジカル拡張フレームワークであるBATを考案した。
論文 参考訳(メタデータ) (2023-08-27T19:01:29Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Adaptive Distribution Calibration for Few-Shot Learning with
Hierarchical Optimal Transport [78.9167477093745]
本稿では,新しいサンプルとベースクラス間の適応重み行列を学習し,新しい分布校正法を提案する。
標準ベンチマーク実験の結果,提案したプラグ・アンド・プレイモデルの方が競合する手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-10-09T02:32:57Z) - Local overlap reduction procedure for dynamic ensemble selection [13.304462985219237]
クラス不均衡は、分類モデルにおいて学習をより困難にすることで知られる特徴である。
分類過程における局所クラス重複の影響を最小限に抑えるDS手法を提案する。
実験の結果,提案手法はベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2022-06-16T21:31:05Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。