論文の概要: Adaptive Substructure-Aware Expert Model for Molecular Property Prediction
- arxiv url: http://arxiv.org/abs/2504.05844v1
- Date: Tue, 08 Apr 2025 09:25:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:29:08.209019
- Title: Adaptive Substructure-Aware Expert Model for Molecular Property Prediction
- Title(参考訳): 分子特性予測のための適応的サブ構造認識エキスパートモデル
- Authors: Tianyi Jiang, Zeyu Wang, Shanqing Yu, Qi Xuan,
- Abstract要約: グラフニューラルネットワーク(GNN)は分子を分子グラフとしてモデル化することで有望な結果を示す。
既存の方法は、しばしば異なるサブストラクチャーの分子特性への様々な貢献を見落としている。
分子特性予測にMixture-of-Experts(MoE)アプローチを利用する新しいGNNベースのフレームワークであるPhil-Molを提案する。
- 参考スコア(独自算出の注目度): 5.087741013479207
- License:
- Abstract: Molecular property prediction is essential for applications such as drug discovery and toxicity assessment. While Graph Neural Networks (GNNs) have shown promising results by modeling molecules as molecular graphs, their reliance on data-driven learning limits their ability to generalize, particularly in the presence of data imbalance and diverse molecular substructures. Existing methods often overlook the varying contributions of different substructures to molecular properties, treating them uniformly. To address these challenges, we propose ASE-Mol, a novel GNN-based framework that leverages a Mixture-of-Experts (MoE) approach for molecular property prediction. ASE-Mol incorporates BRICS decomposition and significant substructure awareness to dynamically identify positive and negative substructures. By integrating a MoE architecture, it reduces the adverse impact of negative motifs while improving adaptability to positive motifs. Experimental results on eight benchmark datasets demonstrate that ASE-Mol achieves state-of-the-art performance, with significant improvements in both accuracy and interpretability.
- Abstract(参考訳): 薬物発見や毒性評価などの応用には分子特性予測が不可欠である。
グラフニューラルネットワーク(GNN)は、分子を分子グラフとしてモデル化することで有望な結果を示しているが、データ駆動学習への依存は、特にデータ不均衡と多様な分子サブ構造の存在下で、一般化する能力を制限している。
既存の方法は、しばしば異なるサブ構造の分子特性への様々な貢献を見落とし、それらを一様に扱う。
これらの課題に対処するために,分子特性予測にMixture-of-Experts(MoE)アプローチを利用する新しいGNNベースのフレームワークASE-Molを提案する。
ASE-MolはBRICS分解と重要なサブ構造認識を組み込んで、正および負のサブ構造を動的に同定する。
MoEアーキテクチャを統合することで、負のモチーフの悪影響を軽減すると同時に、正のモチーフへの適応性を向上させることができる。
8つのベンチマークデータセットの実験結果から、ASE-Molは最先端のパフォーマンスを実現し、精度と解釈性の両方が大幅に改善された。
関連論文リスト
- Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
本稿では,分子特性予測のための自己教師付きグラフニューラルネットワークフレームワークであるDIG-Molを紹介する。
DIG-Molは2つの相互接続ネットワークと運動量蒸留ネットワークを統合し、分子特性を効率的に改善する。
我々は,様々な分子特性予測タスクにおける広範囲な実験的評価により,DIG-Molの最先端性能を確立した。
論文 参考訳(メタデータ) (2024-05-04T10:09:27Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
分子に固有の二重レベル構造を考慮に入れたGODEを導入する。
分子は固有のグラフ構造を持ち、より広い分子知識グラフ内のノードとして機能する。
異なるグラフ構造上の2つのGNNを事前学習することにより、GODEは対応する知識グラフサブ構造と分子構造を効果的に融合させる。
論文 参考訳(メタデータ) (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
我々は、原子とサブグラフを意識したバイラテラルアグリゲーション(ASBA)と呼ばれる分子表現学習の新しいモデルを導入する。
ASBAは、両方の種類の情報を統合することで、以前の原子単位とサブグラフ単位のモデルの限界に対処する。
本手法は,分子特性予測のための表現をより包括的に学習する方法を提供する。
論文 参考訳(メタデータ) (2023-05-22T00:56:00Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Property-aware Adaptive Relation Networks for Molecular Property
Prediction [34.13439007658925]
分子特性予測問題に対する特性認識適応関係ネットワーク(PAR)を提案する。
我々のPARは、既存のグラフベースの分子エンコーダと互換性があり、プロパティ対応分子埋め込みとモデル分子関係グラフを得る能力も備えている。
論文 参考訳(メタデータ) (2021-07-16T16:22:30Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
分子特性予測の新しいモデルであるMeta-MGNNを提案する。
ラベルのない分子情報を利用するため、Meta-MGNNはさらに分子構造、属性ベースの自己監視モジュール、および自己注意のタスクウェイトを組み込む。
2つの公開マルチプロパティデータセットに関する広範な実験は、Meta-MGNNがさまざまな最先端のメソッドを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-16T01:55:34Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。