論文の概要: Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants
- arxiv url: http://arxiv.org/abs/2504.05852v1
- Date: Tue, 08 Apr 2025 09:29:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:28:31.627155
- Title: Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants
- Title(参考訳): エネルギー含有確率補間体を通した乱流流体の物理認識生成モデル
- Authors: Nikolaj T. Mücke, Benjamin Sanderse,
- Abstract要約: 生成モデルは、テキスト、画像、ビデオなどの領域で顕著な成功を収めている。
本研究では, 生成モデルの流体力学への応用, 特に乱流シミュレーションについて検討する。
本稿では,物理制約を取り入れつつ確率的予測を可能にする補間子に基づく新しい生成モデルを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Generative models have demonstrated remarkable success in domains such as text, image, and video synthesis. In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation, where classical numerical solvers are computationally expensive. We propose a novel stochastic generative model based on stochastic interpolants, which enables probabilistic forecasting while incorporating physical constraints such as energy stability and divergence-freeness. Unlike conventional stochastic generative models, which are often agnostic to underlying physical laws, our approach embeds energy consistency by making the parameters of the stochastic interpolant learnable coefficients. We evaluate our method on a benchmark turbulence problem - Kolmogorov flow - demonstrating superior accuracy and stability over state-of-the-art alternatives such as autoregressive conditional diffusion models (ACDMs) and PDE-Refiner. Furthermore, we achieve stable results for significantly longer roll-outs than standard stochastic interpolants. Our results highlight the potential of physics-aware generative models in accelerating and enhancing turbulence simulations while preserving fundamental conservation properties.
- Abstract(参考訳): 生成モデルは、テキスト、画像、ビデオ合成といった領域で顕著な成功を収めている。
本研究では,流体力学への生成モデルの適用,特に古典的数値解法が計算に高価である乱流シミュレーションについて検討する。
本稿では,確率的補間に基づく新しい確率的生成モデルを提案し,エネルギー安定性や分散自由度といった物理的制約を取り入れつつ確率的予測を可能にする。
基礎となる物理法則に非依存な従来の確率的生成モデルとは異なり、我々の手法は確率補間可学習係数のパラメータを作成することによってエネルギーの整合性を埋め込む。
本研究では, 自己回帰条件拡散モデル (ACDM) やPDE-Refiner といった最先端の代替品よりも精度と安定性が優れていることを示す。
さらに, 標準確率補間剤よりもはるかに長いロールアウトに対して, 安定した結果が得られる。
本研究は, 基礎保存特性を保ちながら, 乱流シミュレーションを加速・拡張する物理認識生成モデルの可能性を強調した。
関連論文リスト
- Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
エネルギーベース拡散言語モデル(Energy-based Diffusion Language Model, EDLM)は、拡散ステップごとに全シーケンスレベルで動作するエネルギーベースモデルである。
我々のフレームワークは、既存の拡散モデルよりも1.3$times$のサンプリングスピードアップを提供する。
論文 参考訳(メタデータ) (2024-10-28T17:25:56Z) - Parametric model reduction of mean-field and stochastic systems via higher-order action matching [1.1509084774278489]
我々は、勾配と平均場効果を特徴とする物理系の人口動態のモデルを学ぶ。
提案手法は,幅広いパラメータの集団動態を正確に予測し,最先端拡散モデルおよびフローベースモデルより優れていることを示す。
論文 参考訳(メタデータ) (2024-10-15T19:05:28Z) - Model-Free Stochastic Process Modeling and Optimization using Normalizing Flows [0.0]
本研究は, 化学プロセスの力学を学習するために, 離散時間モデルとして条件正規化フローを用いることを提案する。
正規化フローは長期水平線上での安定なシミュレーションと、開ループ制御のための確率的およびMPC定式化による高品質な結果をもたらす。
論文 参考訳(メタデータ) (2024-09-26T08:28:14Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
本研究では,4次元生成拡散モデルと物理インフォームドガイダンスを導入し,現実的な流れ状態列の生成を可能にする。
提案手法は, 乱流多様体からのサブシーケンス全体のサンプリングに有効であることが示唆された。
この進展は、乱流の時間的進化を分析するために生成モデリングを適用するための扉を開く。
論文 参考訳(メタデータ) (2024-06-17T10:21:01Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
この研究は生成モデルの到達範囲を物理的問題領域に拡張する。
基礎となるPDEとの整合性を促進するための効率的なアプローチを提案する。
各種物理課題におけるスコアベース生成モデルの可能性と汎用性を示す。
論文 参考訳(メタデータ) (2023-12-16T19:56:10Z) - Equivariant Flow Matching with Hybrid Probability Transport [69.11915545210393]
拡散モデル (DM) は, 特徴量の多いジオメトリの生成に有効であることを示した。
DMは通常、非効率なサンプリング速度を持つ不安定な確率力学に悩まされる。
等変モデリングと安定化確率力学の両方の利点を享受する幾何フローマッチングを導入する。
論文 参考訳(メタデータ) (2023-12-12T11:13:13Z) - Bayesian Conditional Diffusion Models for Versatile Spatiotemporal
Turbulence Generation [13.278744447861289]
本稿では,乱流発生の確率的拡散モデルに基づく新しい生成フレームワークを提案する。
提案手法の特長は, 自己回帰に基づく条件抽出に基づく長寿命流れ列生成法である。
数値解析実験により, フレームワークの多目的乱流発生能力を実証した。
論文 参考訳(メタデータ) (2023-11-14T04:08:14Z) - Differentiable physics-enabled closure modeling for Burgers' turbulence [0.0]
本稿では、既知の物理と機械学習を組み合わせて乱流問題に対するクロージャモデルを開発する微分可能な物理パラダイムを用いたアプローチについて論じる。
我々は、モデルの有効性をテストするために、後方損失関数上の様々な物理仮定を組み込んだ一連のモデルを訓練する。
既知物理あるいは既存の閉包アプローチを含む偏微分方程式の形で帰納バイアスを持つ制約モデルが、非常にデータ効率が高く、正確で、一般化可能なモデルを生成することを発見した。
論文 参考訳(メタデータ) (2022-09-23T14:38:01Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
本稿では,自己回帰生成モデルの学習のための独自のE-ARM法を提案する。
E-ARMは、よく設計されたエネルギーベースの学習目標を活用する。
我々は、E-ARMを効率的に訓練でき、露光バイアス問題を緩和できることを示した。
論文 参考訳(メタデータ) (2022-06-26T10:58:41Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
表現的自己回帰ダイナミクスモデルが次の状態の異なる次元を生成し、以前の次元で順次条件付きで報酬を得ることを示す。
また,リプレイバッファを充実させる手段として,自己回帰的ダイナミクスモデルがオフラインポリシー最適化に有用であることを示す。
論文 参考訳(メタデータ) (2021-04-28T16:48:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。