Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants
- URL: http://arxiv.org/abs/2504.05852v1
- Date: Tue, 08 Apr 2025 09:29:01 GMT
- Title: Physics-aware generative models for turbulent fluid flows through energy-consistent stochastic interpolants
- Authors: Nikolaj T. Mücke, Benjamin Sanderse,
- Abstract summary: Generative models have demonstrated remarkable success in domains such as text, image, and video.<n>In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation.<n>We propose a novel generative model based on interpolants, which enables probabilistic forecasting while incorporating physical constraints.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative models have demonstrated remarkable success in domains such as text, image, and video synthesis. In this work, we explore the application of generative models to fluid dynamics, specifically for turbulence simulation, where classical numerical solvers are computationally expensive. We propose a novel stochastic generative model based on stochastic interpolants, which enables probabilistic forecasting while incorporating physical constraints such as energy stability and divergence-freeness. Unlike conventional stochastic generative models, which are often agnostic to underlying physical laws, our approach embeds energy consistency by making the parameters of the stochastic interpolant learnable coefficients. We evaluate our method on a benchmark turbulence problem - Kolmogorov flow - demonstrating superior accuracy and stability over state-of-the-art alternatives such as autoregressive conditional diffusion models (ACDMs) and PDE-Refiner. Furthermore, we achieve stable results for significantly longer roll-outs than standard stochastic interpolants. Our results highlight the potential of physics-aware generative models in accelerating and enhancing turbulence simulations while preserving fundamental conservation properties.
Related papers
- Stochastic generative methods for stable and accurate closure modeling of chaotic dynamical systems [0.0]
deterministic subgrid-scale (SGS) models are often dissipative and unstable, especially in regions of chaotic and turbulent flow.
We propose parametric and generative approaches for closure modeling using differential equations (SDEs)
We derive and implement a model based on the fluctuations, demonstrating increased accuracy from bridging theoretical models with generative approaches.
arXiv Detail & Related papers (2025-04-13T22:59:42Z) - Energy-Based Diffusion Language Models for Text Generation [126.23425882687195]
Energy-based Diffusion Language Model (EDLM) is an energy-based model operating at the full sequence level for each diffusion step.<n>Our framework offers a 1.3$times$ sampling speedup over existing diffusion models.
arXiv Detail & Related papers (2024-10-28T17:25:56Z) - Parametric model reduction of mean-field and stochastic systems via higher-order action matching [1.1509084774278489]
We learn models of population dynamics of physical systems that feature gradient and mean-field effects.
We show that our approach accurately predicts population dynamics over a wide range of parameters and outperforms state-of-the-art diffusion-based and flow-based modeling.
arXiv Detail & Related papers (2024-10-15T19:05:28Z) - Model-Free Stochastic Process Modeling and Optimization using Normalizing Flows [0.0]
This work proposes using conditional normalizing flows as discrete-time models to learn the dynamics of chemical processes.
The normalizing flow yields stable simulations over long time horizons and high-quality results in probabilistic and MPC formulation for open-loop control.
arXiv Detail & Related papers (2024-09-26T08:28:14Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces novel deep dynamical models designed to represent continuous-time sequences.<n>We train the model using maximum likelihood estimation with Markov chain Monte Carlo.<n> Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Unfolding Time: Generative Modeling for Turbulent Flows in 4D [49.843505326598596]
This work introduces a 4D generative diffusion model and a physics-informed guidance technique that enables the generation of realistic sequences of flow states.
Our findings indicate that the proposed method can successfully sample entire subsequences from the turbulent manifold.
This advancement opens doors for the application of generative modeling in analyzing the temporal evolution of turbulent flows.
arXiv Detail & Related papers (2024-06-17T10:21:01Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
This work extends the reach of generative models into physical problem domains.
We present an efficient approach to promote consistency with the underlying PDE.
We showcase the potential and versatility of score-based generative models in various physics tasks.
arXiv Detail & Related papers (2023-12-16T19:56:10Z) - Equivariant Flow Matching with Hybrid Probability Transport [69.11915545210393]
Diffusion Models (DMs) have demonstrated effectiveness in generating feature-rich geometries.
DMs typically suffer from unstable probability dynamics with inefficient sampling speed.
We introduce geometric flow matching, which enjoys the advantages of both equivariant modeling and stabilized probability dynamics.
arXiv Detail & Related papers (2023-12-12T11:13:13Z) - Bayesian Conditional Diffusion Models for Versatile Spatiotemporal
Turbulence Generation [13.278744447861289]
We introduce a novel generative framework grounded in probabilistic diffusion models for turbulence generation.
A notable feature of our approach is the proposed method for long-span flow sequence generation, which is based on autoregressive-based conditional sampling.
We showcase the versatile turbulence generation capability of our framework through a suite of numerical experiments.
arXiv Detail & Related papers (2023-11-14T04:08:14Z) - Benchmarking Autoregressive Conditional Diffusion Models for Turbulent Flow Simulation [26.520247496906492]
In this work, we analyze if fully data-driven fluid solvers that utilize an autoregressive rollout based on conditional diffusion models are a viable option to address this challenge.<n>To quantitatively and qualitatively benchmark the performance of various flow prediction approaches, three challenging 2D scenarios including incompressible and transonic flows, as well as isotropic turbulence are employed.<n>We find that even simple diffusion-based approaches can outperform multiple established flow prediction methods in terms of accuracy and temporal stability, while being on par with state-of-the-art stabilization techniques like unrolling at training time.
arXiv Detail & Related papers (2023-09-04T18:01:42Z) - Synthetic Lagrangian Turbulence by Generative Diffusion Models [1.7810134788247751]
We propose a machine learning approach to generate single-particle trajectories in three-dimensional turbulence at high Reynolds numbers.
Our model demonstrates the ability to reproduce most statistical benchmarks across time scales.
Surprisingly, the model exhibits strong generalizability for extreme events, producing events of higher intensity and rarity that still match the realistic statistics.
arXiv Detail & Related papers (2023-07-17T14:42:32Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.