HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference
- URL: http://arxiv.org/abs/2504.05897v1
- Date: Tue, 08 Apr 2025 10:47:37 GMT
- Title: HybriMoE: Hybrid CPU-GPU Scheduling and Cache Management for Efficient MoE Inference
- Authors: Shuzhang Zhong, Yanfan Sun, Ling Liang, Runsheng Wang, Ru Huang, Meng Li,
- Abstract summary: HybriMoE is a hybrid CPU-GPU inference framework that improves resource utilization through a novel CPU-GPU scheduling and cache management system.<n>We implement HybriMoE on top of the kTransformers framework and evaluate it on three widely used MoE-based LLMs.
- Score: 5.015541720729724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Mixture of Experts (MoE) architecture has demonstrated significant advantages as it enables to increase the model capacity without a proportional increase in computation. However, the large MoE model size still introduces substantial memory demands, which usually requires expert offloading on resource-constrained platforms and incurs significant overhead. Hybrid CPU-GPU inference has been proposed to leverage CPU computation to reduce expert loading overhead but faces major challenges: on one hand, the expert activation patterns of MoE models are highly unstable, rendering the fixed mapping strategies in existing works inefficient; on the other hand, the hybrid CPU-GPU schedule for MoE is inherently complex due to the diverse expert sizes, structures, uneven workload distribution, etc. To address these challenges, in this paper, we propose HybriMoE, a hybrid CPU-GPU inference framework that improves resource utilization through a novel CPU-GPU scheduling and cache management system. HybriMoE introduces (i) a dynamic intra-layer scheduling strategy to balance workloads across CPU and GPU, (ii) an impact-driven inter-layer prefetching algorithm, and (iii) a score-based caching algorithm to mitigate expert activation instability. We implement HybriMoE on top of the kTransformers framework and evaluate it on three widely used MoE-based LLMs. Experimental results demonstrate that HybriMoE achieves an average speedup of 1.33$\times$ in the prefill stage and 1.70$\times$ in the decode stage compared to state-of-the-art hybrid MoE inference framework. Our code is available at: https://github.com/PKU-SEC-Lab/HybriMoE.
Related papers
- MoE-Lens: Towards the Hardware Limit of High-Throughput MoE LLM Serving Under Resource Constraints [7.287566040274871]
MoE-Lens is an inference system designed through holistic performance modeling for resource-constrained environments.
It captures the system execution mechanisms to identify the key hardware bottlenecks and accurately predict the achievable throughput.
evaluated on diverse MoE models and datasets, MoE-Lens outperforms the state-of-the-art solution by 4.6x on average (up to 25.5x)
arXiv Detail & Related papers (2025-04-12T21:26:56Z) - MoE-Gen: High-Throughput MoE Inference on a Single GPU with Module-Based Batching [2.543762777822215]
MoE-Gen is a high- throughput MoE inference system for singleGPU execution.
We introduce module-based tokens, which accumulates in host memory and dynamically launches large batches on to maximize utilization.
MoE-Gen achieves 8-31x higher throughput compared to state-of-the-art systems.
arXiv Detail & Related papers (2025-03-12T18:08:01Z) - MobileMamba: Lightweight Multi-Receptive Visual Mamba Network [51.33486891724516]
Previous research on lightweight models has primarily focused on CNNs and Transformer-based designs.
We propose the MobileMamba framework, which balances efficiency and performance.
MobileMamba achieves up to 83.6% on Top-1, surpassing existing state-of-the-art methods.
arXiv Detail & Related papers (2024-11-24T18:01:05Z) - MoE-Lightning: High-Throughput MoE Inference on Memory-constrained GPUs [55.95879347182669]
MoE architecture is renowned for its ability to increase model capacity without a proportional increase in inference cost.
MoE-Lightning introduces a novel CPU-GPU-I/O pipelining schedule, CGOPipe, with paged weights to achieve high resource utilization.
MoE-Lightning can achieve up to 10.3x higher throughput than state-of-the-art offloading-enabled LLM inference systems for Mixtral 8x7B on a single T4 GPU (16GB)
arXiv Detail & Related papers (2024-11-18T01:06:12Z) - HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference [54.40808356999408]
We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference.
Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency.
HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.
arXiv Detail & Related papers (2024-11-03T04:25:46Z) - EPS-MoE: Expert Pipeline Scheduler for Cost-Efficient MoE Inference [49.94169109038806]
This paper introduces EPS-MoE, a novel expert pipeline scheduler for MoE that surpasses the existing parallelism schemes.<n>Our results demonstrate at most 52.4% improvement in prefill throughput compared to existing parallel inference methods.
arXiv Detail & Related papers (2024-10-16T05:17:49Z) - Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative
Model Inference with Unstructured Sparsity [12.663030430488922]
We propose Flash-LLM for enabling low-cost and highly-efficient large generative model inference on high-performance Cores.
At SpMM kernel level, Flash-LLM significantly outperforms the state-of-the-art library, i.e., Sputnik and SparTA by an average of 2.9x and 1.5x, respectively.
arXiv Detail & Related papers (2023-09-19T03:20:02Z) - Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference [23.207326766883405]
Mixture-of-Experts (MoE) is able to scale its model size without proportionally scaling up its computational requirements.
Pre-gated MoE employs our novel pre-gating function which alleviates the dynamic nature of sparse expert activation.
We demonstrate that Pre-gated MoE is able to improve performance, reduce GPU memory consumption, while also maintaining the same level of model quality.
arXiv Detail & Related papers (2023-08-23T11:25:37Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - Edge-MoE: Memory-Efficient Multi-Task Vision Transformer Architecture
with Task-level Sparsity via Mixture-of-Experts [60.1586169973792]
M$3$ViT is the latest multi-task ViT model that introduces mixture-of-experts (MoE)
MoE achieves better accuracy and over 80% reduction computation but leaves challenges for efficient deployment on FPGA.
Our work, dubbed Edge-MoE, solves the challenges to introduce the first end-to-end FPGA accelerator for multi-task ViT with a collection of architectural innovations.
arXiv Detail & Related papers (2023-05-30T02:24:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.