論文の概要: AEGIS: Human Attention-based Explainable Guidance for Intelligent Vehicle Systems
- arxiv url: http://arxiv.org/abs/2504.05950v1
- Date: Tue, 08 Apr 2025 12:04:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:30:13.294028
- Title: AEGIS: Human Attention-based Explainable Guidance for Intelligent Vehicle Systems
- Title(参考訳): AEGIS: インテリジェントカーシステムのための人間の注意に基づく説明可能なガイダンス
- Authors: Zhuoli Zhuang, Cheng-You Lu, Yu-Cheng Fred Chang, Yu-Kai Wang, Thomas Do, Chin-Teng Lin,
- Abstract要約: 本研究は、AIIS(Intelligent Vehicle Systems)のためのヒューマンアテンションに基づく説明可能なガイダンス(Human Attention-based Explainable Guidance for Intelligent Vehicle Systems)を提案する。
AEGISは、眼球追跡から変換された人間の注意を用いて、強化学習モデルを誘導し、意思決定における重要な関心領域を特定する。
AEGISは、6つのシナリオにわたる20人の参加者から120万フレームを集め、人間の注意パターンを予測するためのモデルを事前訓練している。
- 参考スコア(独自算出の注目度): 21.815172755976274
- License:
- Abstract: Improving decision-making capabilities in Autonomous Intelligent Vehicles (AIVs) has been a heated topic in recent years. Despite advancements, training machines to capture regions of interest for comprehensive scene understanding, like human perception and reasoning, remains a significant challenge. This study introduces a novel framework, Human Attention-based Explainable Guidance for Intelligent Vehicle Systems (AEGIS). AEGIS utilizes human attention, converted from eye-tracking, to guide reinforcement learning (RL) models to identify critical regions of interest for decision-making. AEGIS uses a pre-trained human attention model to guide RL models to identify critical regions of interest for decision-making. By collecting 1.2 million frames from 20 participants across six scenarios, AEGIS pre-trains a model to predict human attention patterns.
- Abstract(参考訳): 近年、AIV(Autonomous Intelligent Vehicles)における意思決定能力の向上が熱い話題となっている。
進歩にもかかわらず、人間の知覚や推論のような総合的なシーン理解のための関心領域を捉えるための訓練機は、依然として重要な課題である。
本研究では,AEGIS(Intelligent Vehicle Systems)のためのヒューマンアテンションに基づく説明可能なガイダンス(Human Attention-based Explainable Guidance for Intelligent Vehicle Systems)を提案する。
AEGISは、視線追跡から変換された人間の注意を利用して、強化学習(RL)モデルを誘導し、意思決定における重要な関心領域を特定する。
AEGISは、事前訓練された人間の注意モデルを使用して、RLモデルをガイドし、意思決定における重要な関心領域を特定する。
AEGISは、6つのシナリオにわたる20人の参加者から120万フレームを集め、人間の注意パターンを予測するためのモデルを事前訓練している。
関連論文リスト
- Generative Artificial Intelligence Meets Synthetic Aperture Radar: A Survey [49.29751866761522]
本稿では,GenAIとSARの交差点について検討する。
まず、SAR分野における一般的なデータ生成ベースのアプリケーションについて説明する。
次に、最新のGenAIモデルの概要を体系的にレビューする。
最後に、SARドメインの対応するアプリケーションも含まれる。
論文 参考訳(メタデータ) (2024-11-05T03:06:00Z) - Passenger hazard perception based on EEG signals for highly automated driving vehicles [23.322910031715583]
本研究は,乗用車間相互作用の神経機構を解明し,乗用車認知モデル(PCM)と乗用車脳波復号戦略(PEDS)の開発に繋がるものである。
Central to PEDSは、空間的および時間的脳波データパターンをキャプチャする新しい畳み込みリカレントニューラルネットワーク(CRNN)である。
我々の研究は、事前観測された脳波データの予測能力、危険シナリオの検出の強化、より安全な自動運転車のためのネットワーク駆動型フレームワークの提供を強調した。
論文 参考訳(メタデータ) (2024-08-29T07:32:30Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
ビジョンファウンデーションモデル(VFM)は、幅広いAIアプリケーションのための強力なビルディングブロックとして機能する。
総合的なトレーニングデータの不足、マルチセンサー統合の必要性、多様なタスク固有のアーキテクチャは、VFMの開発に重大な障害をもたらす。
本稿では、自動運転に特化したVFMを鍛造する上で重要な課題について述べるとともに、今後の方向性を概説する。
論文 参考訳(メタデータ) (2024-01-16T01:57:24Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Important Object Identification with Semi-Supervised Learning for
Autonomous Driving [37.654878298744855]
本稿では,エゴセントリック駆動シナリオにおける重要な物体識別のための新しい手法を提案する。
モデルが無制限なラベル付きデータから学習できるようにするための,半教師付き学習パイプラインを提案する。
私たちのアプローチはルールベースのベースラインよりも大きなマージンで優れています。
論文 参考訳(メタデータ) (2022-03-05T01:23:13Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
本稿では、コンピュータビジョンとパターン認識の観点から、人間中心の空中監視タスクの概要を概観する。
主な対象は、単体または複数の被験者が検出され、特定され、追跡され、再同定され、その振る舞いが分析される人間である。
論文 参考訳(メタデータ) (2022-01-09T20:13:27Z) - Beyond Tracking: Using Deep Learning to Discover Novel Interactions in
Biological Swarms [3.441021278275805]
本稿では,システムレベルの状態を全体像から直接予測するディープ・ネットワーク・モデルを提案する。
結果の予測モデルは、人間の理解した予測モデルに基づいていないため、説明モジュールを使用する。
これは、行動生態学における人工知能の例である。
論文 参考訳(メタデータ) (2021-08-20T22:50:41Z) - SODA10M: Towards Large-Scale Object Detection Benchmark for Autonomous
Driving [94.11868795445798]
我々は,SODA10Mという名の自律走行用大規模物体検出ベンチマークをリリースし,1000万枚の未ラベル画像と6つの代表対象カテゴリをラベル付けした20K画像を含む。
多様性を向上させるために、画像は32の異なる都市で、1フレームあたり10秒毎に異なる気象条件、期間、場所のシーンで収集される。
我々は、既存の教師付き最先端検出モデル、一般的な自己監督型および半教師付きアプローチ、および将来のモデルの開発方法に関するいくつかの知見について、広範な実験と詳細な分析を行った。
論文 参考訳(メタデータ) (2021-06-21T13:55:57Z) - Attention, please! A survey of Neural Attention Models in Deep Learning [0.0]
ディープラーニングの最先端は、いくつかのアプリケーションドメインの神経注意モデルによって表されます。
この調査は、神経注意モデルの発展の包括的な概要と分析を提供します。
論文 参考訳(メタデータ) (2021-03-31T02:42:28Z) - Survey of Deep Reinforcement Learning for Motion Planning of Autonomous
Vehicles [0.0]
深層強化学習(DRL)
論文では、車両モデル、シミュレーション可能性、計算要求について記述する。
自律運転のさまざまなタスクとレベルによって体系化された最先端のソリューションを調査します。
論文 参考訳(メタデータ) (2020-01-30T09:47:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。