MAPLE: Encoding Dexterous Robotic Manipulation Priors Learned From Egocentric Videos
- URL: http://arxiv.org/abs/2504.06084v1
- Date: Tue, 08 Apr 2025 14:25:25 GMT
- Title: MAPLE: Encoding Dexterous Robotic Manipulation Priors Learned From Egocentric Videos
- Authors: Alexey Gavryushin, Xi Wang, Robert J. S. Malate, Chenyu Yang, Xiangyi Jia, Shubh Goel, Davide Liconti, René Zurbrügg, Robert K. Katzschmann, Marc Pollefeys,
- Abstract summary: We present MAPLE, a novel method for dexterous robotic manipulation that exploits rich manipulation priors to enable efficient policy learning.<n>Specifically, we predict hand-object contact points and detailed hand poses at the moment of hand-object contact and use the learned features to train policies for downstream manipulation tasks.
- Score: 43.836197294180316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale egocentric video datasets capture diverse human activities across a wide range of scenarios, offering rich and detailed insights into how humans interact with objects, especially those that require fine-grained dexterous control. Such complex, dexterous skills with precise controls are crucial for many robotic manipulation tasks, yet are often insufficiently addressed by traditional data-driven approaches to robotic manipulation. To address this gap, we leverage manipulation priors learned from large-scale egocentric video datasets to improve policy learning for dexterous robotic manipulation tasks. We present MAPLE, a novel method for dexterous robotic manipulation that exploits rich manipulation priors to enable efficient policy learning and better performance on diverse, complex manipulation tasks. Specifically, we predict hand-object contact points and detailed hand poses at the moment of hand-object contact and use the learned features to train policies for downstream manipulation tasks. Experimental results demonstrate the effectiveness of MAPLE across existing simulation benchmarks, as well as a newly designed set of challenging simulation tasks, which require fine-grained object control and complex dexterous skills. The benefits of MAPLE are further highlighted in real-world experiments using a dexterous robotic hand, whereas simultaneous evaluation across both simulation and real-world experiments has remained underexplored in prior work.
Related papers
- Dexterous Manipulation through Imitation Learning: A Survey [28.04590024211786]
Dexterous manipulation enables complex interactions similar to human hand dexterity.<n>Traditional model-based approaches struggle to generalize across tasks and object variations.<n>Imitation learning (IL) offers an alternative by allowing robots to acquire dexterous manipulation skills directly from expert demonstrations.
arXiv Detail & Related papers (2025-04-04T15:14:38Z) - Sim-to-Real Reinforcement Learning for Vision-Based Dexterous Manipulation on Humanoids [61.033745979145536]
This work investigates the key challenges in applying reinforcement learning to solve a collection of contact-rich manipulation tasks on a humanoid embodiment.<n>Our main contributions include an automated real-to-sim tuning module that brings the simulated environment closer to the real world.<n>We show promising results on three humanoid dexterous manipulation tasks, with ablation studies on each technique.
arXiv Detail & Related papers (2025-02-27T18:59:52Z) - VITAL: Visual Teleoperation to Enhance Robot Learning through Human-in-the-Loop Corrections [10.49712834719005]
We propose a low-cost visual teleoperation system for bimanual manipulation tasks, called VITAL.
Our approach leverages affordable hardware and visual processing techniques to collect demonstrations.
We enhance the generalizability and robustness of the learned policies by utilizing both real and simulated environments.
arXiv Detail & Related papers (2024-07-30T23:29:47Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - Accelerating Interactive Human-like Manipulation Learning with GPU-based
Simulation and High-quality Demonstrations [25.393382192511716]
We present an immersive virtual reality teleoperation interface designed for interactive human-like manipulation on contact rich tasks.
We demonstrate the complementary strengths of massively parallel RL and imitation learning, yielding robust and natural behaviors.
arXiv Detail & Related papers (2022-12-05T09:37:27Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
We use unlabeled videos of humans solving a wide range of manipulation tasks to learn a task-agnostic reward function for robotic manipulation policies.
The learned rewards are based on distances to a goal in an embedding space learned using a time-contrastive objective.
arXiv Detail & Related papers (2022-11-16T16:26:48Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.