論文の概要: Sherlock: A Dataset for Process-aware Intrusion Detection Research on Power Grid Networks
- arxiv url: http://arxiv.org/abs/2504.06102v1
- Date: Tue, 08 Apr 2025 14:46:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-09 13:27:59.768692
- Title: Sherlock: A Dataset for Process-aware Intrusion Detection Research on Power Grid Networks
- Title(参考訳): Sherlock: 電力グリッドネットワークにおけるプロセス認識侵入検出のためのデータセット
- Authors: Eric Wagner, Lennart Bader, Konrad Wolsing, Martin Serror,
- Abstract要約: ウクライナでの2015年と2016年の停電は、サイバー攻撃によって引き起こされた。
侵入検知はそのような攻撃を素早く検出し、最悪の結果を軽減することを約束する。
本稿では、共同シミュレータWattsonで生成されたデータセットであるSherlockを紹介する。
- 参考スコア(独自算出の注目度): 4.7623236425067335
- License:
- Abstract: Physically distributed components and legacy protocols make the protection of power grids against increasing cyberattack threats challenging. Infamously, the 2015 and 2016 blackouts in Ukraine were caused by cyberattacks, and the German Federal Office for Information Security (BSI) recorded over 200 cyber incidents against the German energy sector between 2023 and 2024. Intrusion detection promises to quickly detect such attacks and mitigate the worst consequences. However, public datasets of realistic scenarios are vital to evaluate these systems. This paper introduces Sherlock, a dataset generated with the co-simulator Wattson. In total, Sherlock covers three scenarios with various attacks manipulating the process state by injecting malicious commands or manipulating measurement values. We additionally test five recently-published intrusion detection systems on Sherlock, highlighting specific challenges for intrusion detection in power grids. Dataset and documentation are available at https://sherlock.wattson.it/.
- Abstract(参考訳): 物理的に分散したコンポーネントとレガシープロトコルは、サイバー攻撃の脅威の増加に対する電力グリッドの保護を困難にしている。
悪名高いことに、2015年と2016年のウクライナの停電はサイバー攻撃によって引き起こされ、2023年から2024年にかけてドイツ連邦情報セキュリティ局(BSI)はドイツのエネルギーセクターに対して200件以上のサイバー事件を記録した。
侵入検知はそのような攻撃を素早く検出し、最悪の結果を軽減することを約束する。
しかし、これらのシステムを評価するためには、現実的なシナリオの公開データセットが不可欠である。
本稿では、共同シミュレータWattsonで生成されたデータセットであるSherlockを紹介する。
Sherlockは、悪意のあるコマンドを注入したり、測定値を操作することで、プロセス状態を操作するさまざまな攻撃を伴う3つのシナリオをカバーしている。
さらに、Sherlock上で最近公開された5つの侵入検知システムをテストし、電力網における侵入検出の具体的な課題を強調した。
データセットとドキュメントはhttps://sherlock.wattson.it/.comで公開されている。
関連論文リスト
- IDU-Detector: A Synergistic Framework for Robust Masquerader Attack Detection [3.3821216642235608]
デジタル時代には、ユーザは個人データを企業データベースに格納し、データセキュリティを企業管理の中心とする。
大規模な攻撃面を考えると、アセットは弱い認証、脆弱性、マルウェアといった課題に直面している。
IDU-Detectorを導入し、侵入検知システム(IDS)とユーザ・エンティティ・ビヘイビア・アナリティクス(UEBA)を統合した。
この統合は、不正アクセスを監視し、システムギャップをブリッジし、継続的な監視を保証し、脅威識別を強化する。
論文 参考訳(メタデータ) (2024-11-09T13:03:29Z) - Stumbling Blocks: Stress Testing the Robustness of Machine-Generated
Text Detectors Under Attacks [48.32116554279759]
一般的な機械生成テキスト検出器の強靭性について,編集,パラフレージング,プロンプト,コジェネレーションの様々なカテゴリの攻撃下で検討する。
我々の攻撃はジェネレータLSMへの限られたアクセスを前提としており、異なる予算レベルで異なる攻撃に対する検出器の性能を比較する。
全ての検知器を平均すると、全ての攻撃で性能は35%低下する。
論文 参考訳(メタデータ) (2024-02-18T16:36:00Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
本研究では,電力網における多段階サイバー攻撃の合成データを生成するモデルを提案する。
攻撃者のステップのシーケンスをモデル化するためにアタックツリーを使用し、ディフェンダーのアクションを組み込むゲーム理論のアプローチを使用する。
論文 参考訳(メタデータ) (2023-12-21T09:54:18Z) - Physics-Informed Convolutional Autoencoder for Cyber Anomaly Detection
in Power Distribution Grids [0.0]
本稿では,物理インフォームド・コンボリューション・オートエンコーダ(PIConvAE)を提案する。
提案モデルは、Kirchhoffの法則を適用して、ニューラルネットワークの損失関数に物理原理を統合する。
論文 参考訳(メタデータ) (2023-12-08T00:05:13Z) - Towards a Near-real-time Protocol Tunneling Detector based on Machine Learning Techniques [0.0]
本稿では,機械学習技術を用いて企業のネットワークトラフィックをほぼリアルタイムで検査するプロトコルトンネル検出器のプロトタイプを提案する。
検出器は暗号化されていないネットワークフローを監視し、起こりうる攻撃や異常を検出する特徴を抽出する。
その結果、全体的な精度は97.1%であり、F1スコアは95.6%である。
論文 参考訳(メタデータ) (2023-09-22T09:08:43Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - A Heterogeneous Graph Learning Model for Cyber-Attack Detection [4.559898668629277]
サイバー攻撃は、ハッカーが標的とする情報システムに侵入する悪意のある試みである。
本稿では,証明データに基づく知的サイバー攻撃検出手法を提案する。
実験の結果,提案手法は他の学習ベース検出モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-12-16T16:03:39Z) - MixNet for Generalized Face Presentation Attack Detection [63.35297510471997]
我々は、プレゼンテーションアタックを検出するための、TextitMixNetと呼ばれるディープラーニングベースのネットワークを提案している。
提案アルゴリズムは最先端の畳み込みニューラルネットワークアーキテクチャを利用して,各攻撃カテゴリの特徴マッピングを学習する。
論文 参考訳(メタデータ) (2020-10-25T23:01:13Z) - Firearm Detection and Segmentation Using an Ensemble of Semantic Neural
Networks [62.997667081978825]
本稿では,意味的畳み込みニューラルネットワークのアンサンブルに基づく兵器検出システムを提案する。
特定のタスクに特化した単純なニューラルネットワークのセットは、計算リソースを少なくし、並列にトレーニングすることができる。
個々のネットワークの出力の集約によって与えられるシステムの全体的な出力は、ユーザが偽陽性と偽陰性とをトレードオフするように調整することができる。
論文 参考訳(メタデータ) (2020-02-11T13:58:16Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。