Hyperbolic Category Discovery
- URL: http://arxiv.org/abs/2504.06120v1
- Date: Tue, 08 Apr 2025 15:12:33 GMT
- Title: Hyperbolic Category Discovery
- Authors: Yuanpei Liu, Zhenqi He, Kai Han,
- Abstract summary: Generalized Category Discovery (GCD) aims to categorize all images in the unlabelled subset, regardless of whether they belong to known or unknown classes.<n>Hyperbolic framework for learning hierarchy-aware representations and classifiers for GCD is presented.
- Score: 12.654574453480635
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generalized Category Discovery (GCD) is an intriguing open-world problem that has garnered increasing attention. Given a dataset that includes both labelled and unlabelled images, GCD aims to categorize all images in the unlabelled subset, regardless of whether they belong to known or unknown classes. In GCD, the common practice typically involves applying a spherical projection operator at the end of the self-supervised pretrained backbone, operating within Euclidean or spherical space. However, both of these spaces have been shown to be suboptimal for encoding samples that possesses hierarchical structures. In contrast, hyperbolic space exhibits exponential volume growth relative to radius, making it inherently strong at capturing the hierarchical structure of samples from both seen and unseen categories. Therefore, we propose to tackle the category discovery challenge in the hyperbolic space. We introduce HypCD, a simple \underline{Hyp}erbolic framework for learning hierarchy-aware representations and classifiers for generalized \underline{C}ategory \underline{D}iscovery. HypCD first transforms the Euclidean embedding space of the backbone network into hyperbolic space, facilitating subsequent representation and classification learning by considering both hyperbolic distance and the angle between samples. This approach is particularly helpful for knowledge transfer from known to unknown categories in GCD. We thoroughly evaluate HypCD on public GCD benchmarks, by applying it to various baseline and state-of-the-art methods, consistently achieving significant improvements.
Related papers
- DebGCD: Debiased Learning with Distribution Guidance for Generalized Category Discovery [14.222473509173357]
We tackle the problem of Generalized Category Discovery (GCD)<n>In GCD, an inherent label bias exists between known and unknown classes due to the lack of ground-truth labels for the latter.<n>We introduce DebGCD, a underlineDebiased learning with distribution guidance framework for underlineGCD.
arXiv Detail & Related papers (2025-04-07T07:56:01Z) - ProtoGCD: Unified and Unbiased Prototype Learning for Generalized Category Discovery [42.965641047139904]
Generalized category discovery (GCD) is a pragmatic but underexplored problem.<n>Unlabeled data contain both old and new classes.<n>ProtoGCD achieves state-of-the-art performance on both generic and fine-grained datasets.
arXiv Detail & Related papers (2025-04-02T06:13:14Z) - Prototypical Hash Encoding for On-the-Fly Fine-Grained Category Discovery [65.16724941038052]
Category-aware Prototype Generation (CPG) and Discrimi Category 5.3% (DCE) are proposed.<n>CPG enables the model to fully capture the intra-category diversity by representing each category with multiple prototypes.<n>DCE boosts the discrimination ability of hash code with the guidance of the generated category prototypes.
arXiv Detail & Related papers (2024-10-24T23:51:40Z) - Generalized Categories Discovery for Long-tailed Recognition [8.69033435074757]
Generalized Class Discovery plays a pivotal role in discerning both known and unknown categories from unlabeled datasets.
Our research endeavors to bridge this disconnect by focusing on the long-tailed Generalized Category Discovery (Long-tailed GCD) paradigm.
In response to the unique challenges posed by Long-tailed GCD, we present a robust methodology anchored in two strategic regularizations.
arXiv Detail & Related papers (2023-12-04T09:21:30Z) - Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - OpenGCD: Assisting Open World Recognition with Generalized Category
Discovery [4.600906853436266]
A desirable open world recognition (OWR) system requires performing three tasks.
We propose OpenGCD that combines three key ideas to solve the above problems sequentially.
Experiments on two standard classification benchmarks and a challenging dataset demonstrate that OpenGCD not only offers excellent compatibility but also substantially outperforms other baselines.
arXiv Detail & Related papers (2023-08-14T04:10:45Z) - Federated Classification in Hyperbolic Spaces via Secure Aggregation of
Convex Hulls [35.327709607897944]
We develop distributed versions of convex SVM classifiers for Poincar'e discs.
We compute the complexity of the convex hulls in hyperbolic spaces to assess the extent of data leakage.
We test our method on a collection of diverse data sets, including hierarchical single-cell RNA-seq data from different patients distributed across different repositories.
arXiv Detail & Related papers (2023-08-14T02:25:48Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.