Assessing employment and labour issues implicated by using AI
- URL: http://arxiv.org/abs/2504.06322v1
- Date: Tue, 08 Apr 2025 10:14:19 GMT
- Title: Assessing employment and labour issues implicated by using AI
- Authors: Thijs Willems, Darion Jin Hotan, Jiawen Cheryl Tang, Norakmal Hakim bin Norhashim, King Wang Poon, Zi An Galvyn Goh, Radha Vinod,
- Abstract summary: The chapter critiques the dominant reductionist approach in AI and work studies.<n>It advocates for a systemic perspective that emphasizes the interdependence of tasks, roles, and workplace contexts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This chapter critiques the dominant reductionist approach in AI and work studies, which isolates tasks and skills as replaceable components. Instead, it advocates for a systemic perspective that emphasizes the interdependence of tasks, roles, and workplace contexts. Two complementary approaches are proposed: an ethnographic, context-rich method that highlights how AI reconfigures work environments and expertise; and a relational task-based analysis that bridges micro-level work descriptions with macro-level labor trends. The authors argue that effective AI impact assessments must go beyond predicting automation rates to include ethical, well-being, and expertise-related questions. Drawing on empirical case studies, they demonstrate how AI reshapes human-technology relations, professional roles, and tacit knowledge practices. The chapter concludes by calling for a human-centric, holistic framework that guides organizational and policy decisions, balancing technological possibilities with social desirability and sustainability of work.
Related papers
- Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
We argue that the efforts aiming to study AI's ethical ramifications should be made in tandem with those evaluating its impacts on the environment.<n>We propose best practices to better integrate AI ethics and sustainability in AI research and practice.
arXiv Detail & Related papers (2025-04-01T13:53:11Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
We show how pressure and explainable AI (XAI) techniques interact with AI advice-taking behavior.<n>Our results show complex interaction effects, with different combinations of pressure and XAI techniques either improving or worsening AI advice taking behavior.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - The Impact of AI on Perceived Job Decency and Meaningfulness: A Case Study [3.9134031118910264]
This paper explores the impact of AI on job decency and meaningfulness in workplaces.
Findings reveal that respondents visualize a workplace where humans continue to play a dominant role, even with the introduction of advanced AIs.
respondents believe that the introduction of AI will maintain or potentially increase overall job satisfaction.
arXiv Detail & Related papers (2024-06-20T12:52:57Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - Human Delegation Behavior in Human-AI Collaboration: The Effect of Contextual Information [7.475784495279183]
One promising approach to leverage existing complementary capabilities is allowing humans to delegate individual instances of decision tasks to AI.
We conduct a behavioral study to explore the effects of providing contextual information to support this delegation decision.
Our findings reveal that access to contextual information significantly improves human-AI team performance in delegation settings.
arXiv Detail & Related papers (2024-01-09T18:59:47Z) - Responsible AI Considerations in Text Summarization Research: A Review
of Current Practices [89.85174013619883]
We focus on text summarization, a common NLP task largely overlooked by the responsible AI community.
We conduct a multi-round qualitative analysis of 333 summarization papers from the ACL Anthology published between 2020-2022.
We focus on how, which, and when responsible AI issues are covered, which relevant stakeholders are considered, and mismatches between stated and realized research goals.
arXiv Detail & Related papers (2023-11-18T15:35:36Z) - Understanding the Application of Utility Theory in Robotics and
Artificial Intelligence: A Survey [5.168741399695988]
The utility is a unifying concept in economics, game theory, and operations research, even in the Robotics and AI field.
This paper introduces a utility-orient needs paradigm to describe and evaluate inter and outer relationships among agents' interactions.
arXiv Detail & Related papers (2023-06-15T18:55:48Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - A.I. Robustness: a Human-Centered Perspective on Technological
Challenges and Opportunities [8.17368686298331]
Robustness of Artificial Intelligence (AI) systems remains elusive and constitutes a key issue that impedes large-scale adoption.
We introduce three concepts to organize and describe the literature both from a fundamental and applied point of view.
We highlight the central role of humans in evaluating and enhancing AI robustness, considering the necessary knowledge humans can provide.
arXiv Detail & Related papers (2022-10-17T10:00:51Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
Human-robot collaboration (HRC) is the approach that explores the interaction between a human and a robot.
This paper proposes a thorough literature review of the use of machine learning techniques in the context of HRC.
arXiv Detail & Related papers (2021-10-14T15:14:33Z) - An Ecosystem Approach to Ethical AI and Data Use: Experimental
Reflections [0.0]
This paper offers a methodology to identify the needs of AI practitioners when it comes to confronting and resolving ethical challenges.
We offer a grassroots approach to operational ethics based on dialog and mutualised responsibility.
arXiv Detail & Related papers (2020-12-27T07:41:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.