Human Delegation Behavior in Human-AI Collaboration: The Effect of Contextual Information
- URL: http://arxiv.org/abs/2401.04729v3
- Date: Thu, 09 Jan 2025 12:44:44 GMT
- Title: Human Delegation Behavior in Human-AI Collaboration: The Effect of Contextual Information
- Authors: Philipp Spitzer, Joshua Holstein, Patrick Hemmer, Michael Vössing, Niklas Kühl, Dominik Martin, Gerhard Satzger,
- Abstract summary: One promising approach to leverage existing complementary capabilities is allowing humans to delegate individual instances of decision tasks to AI.<n>We conduct a behavioral study to explore the effects of providing contextual information to support this delegation decision.<n>Our findings reveal that access to contextual information significantly improves human-AI team performance in delegation settings.
- Score: 7.475784495279183
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The integration of artificial intelligence (AI) into human decision-making processes at the workplace presents both opportunities and challenges. One promising approach to leverage existing complementary capabilities is allowing humans to delegate individual instances of decision tasks to AI. However, enabling humans to delegate instances effectively requires them to assess several factors. One key factor is the analysis of both their own capabilities and those of the AI in the context of the given task. In this work, we conduct a behavioral study to explore the effects of providing contextual information to support this delegation decision. Specifically, we investigate how contextual information about the AI and the task domain influence humans' delegation decisions to an AI and their impact on the human-AI team performance. Our findings reveal that access to contextual information significantly improves human-AI team performance in delegation settings. Finally, we show that the delegation behavior changes with the different types of contextual information. Overall, this research advances the understanding of computer-supported, collaborative work and provides actionable insights for designing more effective collaborative systems.
Related papers
- The Effect of Explainable AI-based Decision Support on Human Task Performance: A Meta-Analysis [0.0]
We conduct a meta-analysis to explore how XAI affects human performance in classification tasks.
Our results show an improvement in task performance through XAI-based decision support.
The analysis reveals that the studies' risk of bias moderates the effect of explanations in AI, while the explanation type appears to play only a negligible role.
arXiv Detail & Related papers (2025-03-22T10:38:43Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Let people fail! Exploring the influence of explainable virtual and robotic agents in learning-by-doing tasks [45.23431596135002]
This study compares the effects of classic vs. partner-aware explanations on human behavior and performance during a learning-by-doing task.
Results indicated that partner-aware explanations influenced participants differently based on the type of artificial agents involved.
arXiv Detail & Related papers (2024-11-15T13:22:04Z) - Unexploited Information Value in Human-AI Collaboration [23.353778024330165]
How to improve performance of a human-AI team is often not clear without knowing what particular information and strategies each agent employs.
We propose a model based in statistically decision theory to analyze human-AI collaboration.
arXiv Detail & Related papers (2024-11-03T01:34:45Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
We show how pressure and explainable AI (XAI) techniques interact with AI advice-taking behavior.
Our results show complex interaction effects, with different combinations of pressure and XAI techniques either improving or worsening AI advice taking behavior.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
This study raises the research question of measuring human contribution in AI-assisted content generation.
By calculating mutual information between human input and AI-assisted output relative to self-information of AI-assisted output, we quantify the proportional information contribution of humans in content generation.
arXiv Detail & Related papers (2024-08-27T05:56:04Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.
We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.
Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
We examine three AI roles: Recommender, Analyzer, and Devil's Advocate.
Our results show each role's distinct strengths and limitations in task performance, reliance appropriateness, and user experience.
These insights offer valuable implications for designing AI assistants with adaptive functional roles according to different situations.
arXiv Detail & Related papers (2024-03-04T07:32:28Z) - Human-AI collaboration is not very collaborative yet: A taxonomy of interaction patterns in AI-assisted decision making from a systematic review [6.013543974938446]
Leveraging Artificial Intelligence in decision support systems has disproportionately focused on technological advancements.
A human-centered perspective attempts to alleviate this concern by designing AI solutions for seamless integration with existing processes.
arXiv Detail & Related papers (2023-10-30T17:46:38Z) - The Impact of Imperfect XAI on Human-AI Decision-Making [8.305869611846775]
We evaluate how incorrect explanations influence humans' decision-making behavior in a bird species identification task.
Our findings reveal the influence of imperfect XAI and humans' level of expertise on their reliance on AI and human-AI team performance.
arXiv Detail & Related papers (2023-07-25T15:19:36Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Improving Grounded Language Understanding in a Collaborative Environment
by Interacting with Agents Through Help Feedback [42.19685958922537]
We argue that human-AI collaboration should be interactive, with humans monitoring the work of AI agents and providing feedback that the agent can understand and utilize.
In this work, we explore these directions using the challenging task defined by the IGLU competition, an interactive grounded language understanding task in a MineCraft-like world.
arXiv Detail & Related papers (2023-04-21T05:37:59Z) - Human-AI Collaboration: The Effect of AI Delegation on Human Task
Performance and Task Satisfaction [0.0]
We show that task performance and task satisfaction improve through AI delegation.
We identify humans' increased levels of self-efficacy as the underlying mechanism for these improvements.
Our findings provide initial evidence that allowing AI models to take over more management responsibilities can be an effective form of human-AI collaboration.
arXiv Detail & Related papers (2023-03-16T11:02:46Z) - On the Effect of Information Asymmetry in Human-AI Teams [0.0]
We focus on the existence of complementarity potential between humans and AI.
Specifically, we identify information asymmetry as an essential source of complementarity potential.
By conducting an online experiment, we demonstrate that humans can use such contextual information to adjust the AI's decision.
arXiv Detail & Related papers (2022-05-03T13:02:50Z) - Adaptive cognitive fit: Artificial intelligence augmented management of
information facets and representations [62.997667081978825]
Explosive growth in big data technologies and artificial intelligence [AI] applications have led to increasing pervasiveness of information facets.
Information facets, such as equivocality and veracity, can dominate and significantly influence human perceptions of information.
We suggest that artificially intelligent technologies that can adapt information representations to overcome cognitive limitations are necessary.
arXiv Detail & Related papers (2022-04-25T02:47:25Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
There is no clear definition of what is meant by Human Centered Artificial Intelligence.
This paper introduces the term HCAI agent to refer to any physical or software computational agent equipped with AI components.
We see the notion of HCAI agent, together with its components and functions, as a way to bridge the technical and non-technical discussions on human-centered AI.
arXiv Detail & Related papers (2021-12-29T09:58:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.