論文の概要: From Stability to Inconsistency: A Study of Moral Preferences in LLMs
- arxiv url: http://arxiv.org/abs/2504.06324v1
- Date: Tue, 08 Apr 2025 11:52:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:33:13.239091
- Title: From Stability to Inconsistency: A Study of Moral Preferences in LLMs
- Title(参考訳): 安定性から不整合へ:LLMにおける道徳的選好に関する研究
- Authors: Monika Jotautaite, Mary Phuong, Chatrik Singh Mangat, Maria Angelica Martinez,
- Abstract要約: 本稿では,Moral Foundations LLM データセット (MFD-LLM) について紹介する。
実世界の道徳ジレンマに答えることで,LLMが明らかにした道徳的嗜好のスペクトルをフルに把握する新しい評価手法を提案する。
以上の結果から,最先端モデルは極めて均一な値優先性を持つが,一貫性の欠如は明らかである。
- 参考スコア(独自算出の注目度): 4.12484724941528
- License:
- Abstract: As large language models (LLMs) increasingly integrate into our daily lives, it becomes crucial to understand their implicit biases and moral tendencies. To address this, we introduce a Moral Foundations LLM dataset (MFD-LLM) grounded in Moral Foundations Theory, which conceptualizes human morality through six core foundations. We propose a novel evaluation method that captures the full spectrum of LLMs' revealed moral preferences by answering a range of real-world moral dilemmas. Our findings reveal that state-of-the-art models have remarkably homogeneous value preferences, yet demonstrate a lack of consistency.
- Abstract(参考訳): 大きな言語モデル(LLM)が私たちの日常生活にますます統合されるにつれて、その暗黙の偏見と道徳的傾向を理解することが重要になります。
そこで本研究では,Moral Foundations LLMデータセット(MFD-LLM)を紹介する。
実世界の道徳ジレンマに答えることで,LLMが明らかにした道徳的嗜好のスペクトルをフルに把握する新しい評価手法を提案する。
以上の結果から,最先端モデルは極めて均一な値優先性を持つが,一貫性の欠如は明らかである。
関連論文リスト
- Normative Evaluation of Large Language Models with Everyday Moral Dilemmas [0.0]
Reddit 上の "Am I the Asshole" (AITA) コミュニティから得られた複雑で日常的な道徳的ジレンマに基づいて,大規模言語モデル (LLM) を評価する。
以上の結果から,AITAサブレディットにおける人的評価とは大きく異なる,大きな言語モデルでは道徳的判断のパターンが異なることが示唆された。
論文 参考訳(メタデータ) (2025-01-30T01:29:46Z) - M$^3$oralBench: A MultiModal Moral Benchmark for LVLMs [66.78407469042642]
LVLMのための最初のMultiModal Moral BenchmarkであるM$3$oralBenchを紹介する。
M$3$oralBench は Moral Foundations Vignettes (MFVs) の日常的なモラルシナリオを拡張し、テキストから画像への拡散モデル SD3.0 を用いて対応するシナリオイメージを作成する。
道徳基礎理論(MFT)の6つの道徳的基礎にまたがって道徳的評価を行い、道徳的判断、道徳的分類、道徳的対応の課題を含む。
論文 参考訳(メタデータ) (2024-12-30T05:18:55Z) - DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life [46.11149958010897]
日常生活で遭遇した1,360の道徳的ジレンマのデータセットであるDailyDilemmasを提示する。
それぞれのジレンマは、影響された当事者と、それぞれの行動に関する関連する人間の価値の2つの可能な行動を示す。
我々は社会学、心理学、哲学に触発された5つの理論的枠組みのレンズを通して価値を分析する。
論文 参考訳(メタデータ) (2024-10-03T17:08:52Z) - MoralBench: Moral Evaluation of LLMs [34.43699121838648]
本稿では,大規模言語モデル(LLM)の道徳的推論能力の測定と比較を目的とした新しいベンチマークを提案する。
LLMの出力の道徳的次元を探索するために特別に計算された最初の包括的データセットを示す。
本手法は, 定量的分析と倫理学者の質的洞察を組み合わせることで, モデル性能の徹底的な評価を確実にする多面的手法である。
論文 参考訳(メタデータ) (2024-06-06T18:15:01Z) - Exploring and steering the moral compass of Large Language Models [55.2480439325792]
大規模言語モデル(LLM)は、様々な分野における自動化と意思決定の推進の中心となっている。
本研究は,その道徳的特徴を評価するために,最も先進的なLCMの総合的比較分析を提案する。
論文 参考訳(メタデータ) (2024-05-27T16:49:22Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
本研究では,大言語モデルの固有値システムをスクラッチから再構築する新しいフレームワークであるValueLexを提案する。
語彙仮説に基づいて、ValueLexは30以上のLLMから様々な値を引き出すための生成的アプローチを導入している。
我々は,3つのコア値次元,能力,キャラクタ,積分をそれぞれ特定の部分次元で同定し,LLMが非人間的だが構造化された価値体系を持っていることを明らかにした。
論文 参考訳(メタデータ) (2024-04-19T09:44:51Z) - Moral Foundations of Large Language Models [6.6445242437134455]
道徳的基礎理論(MFT)は、人間の道徳的推論を5つの要素に分解する心理学的評価ツールである。
大規模な言語モデル(LLM)は、インターネットから収集されたデータセットに基づいて訓練されるため、そのようなコーパスに存在するバイアスを反映する可能性がある。
本稿では、MFTをレンズとして用いて、人気のあるLLMが特定の道徳的価値観に対して偏見を得たかどうかを分析する。
論文 参考訳(メタデータ) (2023-10-23T20:05:37Z) - Denevil: Towards Deciphering and Navigating the Ethical Values of Large
Language Models via Instruction Learning [36.66806788879868]
大きな言語モデル(LLM)は前例のない突破口をたどったが、彼らの日常生活への統合は非倫理的コンテンツによって社会的リスクを引き起こす可能性がある。
この研究はモラル・ファンデーション理論を利用した倫理的価値を論じている。
論文 参考訳(メタデータ) (2023-10-17T07:42:40Z) - Rethinking Machine Ethics -- Can LLMs Perform Moral Reasoning through the Lens of Moral Theories? [78.3738172874685]
倫理的AIシステムの開発には倫理的判断が不可欠である。
一般的なアプローチは主にボトムアップ方式で実装されており、モラルに関するクラウドソースの意見に基づいて、大量の注釈付きデータを使用してモデルをトレーニングする。
本研究は、学際的な研究から確立された道徳理論を用いて道徳的推論を行うために、言語モデル(LM)を操る柔軟なトップダウンフレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-29T15:57:32Z) - Heterogeneous Value Alignment Evaluation for Large Language Models [91.96728871418]
大規模言語モデル(LLM)は、その価値を人間のものと整合させることを重要視している。
本研究では,LLMと不均一値の整合性を評価するため,不均一値アライメント評価(HVAE)システムを提案する。
論文 参考訳(メタデータ) (2023-05-26T02:34:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。