論文の概要: Deep spatio-temporal point processes: Advances and new directions
- arxiv url: http://arxiv.org/abs/2504.06364v1
- Date: Tue, 08 Apr 2025 18:28:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:07:05.088649
- Title: Deep spatio-temporal point processes: Advances and new directions
- Title(参考訳): 深部時空間過程:進展と新しい方向
- Authors: Xiuyuan Cheng, Zheng Dong, Yao Xie,
- Abstract要約: 時空間プロセス(STPP)は、時間と空間に分散した離散事象をモデル化する。
最近のイノベーションは、条件付き強度関数を直接モデル化するか、柔軟でデータ駆動のインフルエンスカーネルを学ぶことによって、ディープニューラルネットワークを統合している。
本稿では、統計的に説明可能なディープ・インフルエンス・カーネル・アプローチの開発について概説する。
- 参考スコア(独自算出の注目度): 19.382241594513374
- License:
- Abstract: Spatio-temporal point processes (STPPs) model discrete events distributed in time and space, with important applications in areas such as criminology, seismology, epidemiology, and social networks. Traditional models often rely on parametric kernels, limiting their ability to capture heterogeneous, nonstationary dynamics. Recent innovations integrate deep neural architectures -- either by modeling the conditional intensity function directly or by learning flexible, data-driven influence kernels, substantially broadening their expressive power. This article reviews the development of the deep influence kernel approach, which enjoys statistical explainability, since the influence kernel remains in the model to capture the spatiotemporal propagation of event influence and its impact on future events, while also possessing strong expressive power, thereby benefiting from both worlds. We explain the main components in developing deep kernel point processes, leveraging tools such as functional basis decomposition and graph neural networks to encode complex spatial or network structures, as well as estimation using both likelihood-based and likelihood-free methods, and address computational scalability for large-scale data. We also discuss the theoretical foundation of kernel identifiability. Simulated and real-data examples highlight applications to crime analysis, earthquake aftershock prediction, and sepsis prediction modeling, and we conclude by discussing promising directions for the field.
- Abstract(参考訳): 時空間過程(STPP)は、時間と空間に分散した離散的な事象をモデル化し、犯罪学、地震学、疫学、社会ネットワークなどの分野において重要な応用である。
伝統的なモデルは、しばしばパラメトリックカーネルに依存し、不均一で非定常な力学を捉える能力を制限する。
最近のイノベーションはディープ・ニューラル・アーキテクチャを統合する -- 条件付きインテンシティ関数を直接モデル化するか、フレキシブルでデータ駆動のインフルエンス・カーネルを学習することで、表現力を大幅に拡大する。
本稿では、事象の時空間伝播と将来の事象への影響を捉えつつ、強い表現力を持ち、両方の世界から利益を得るモデルに、影響カーネルが残っていることから、統計的に説明可能なディープ・インフルエンス・カーネル・アプローチの展開を概観する。
本稿では,機能的基底分解やグラフニューラルネットワークといったツールを用いて,複雑な空間構造やネットワーク構造を符号化する深層カーネルポイントプロセスの開発における主要なコンポーネントについて説明する。
また、カーネル識別可能性の理論的基礎についても論じる。
シミュレーションおよび実データ例では, 犯罪解析, 地震余震予測, セプシス予測モデルへの応用を取り上げ, 現場への有望な方向性を論じて結論付けている。
関連論文リスト
- Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - Learning Spatiotemporal Dynamical Systems from Point Process Observations [7.381752536547389]
現在のニューラルネットワークベースのモデルアプローチは、時間と空間でランダムに収集されるデータに直面したときに不足する。
そこで我々は,このようなプロセス観察から効果的に学習できる新しい手法を開発した。
我々のモデルは、ニューラルディファレンシャル方程式、ニューラルポイントプロセス、暗黙のニューラル表現、そしてアモータライズされた変分推論の技法を統合している。
論文 参考訳(メタデータ) (2024-06-01T09:03:32Z) - Nonlinear classification of neural manifolds with contextual information [6.292933471495322]
本稿では,入力空間における遅延方向を文脈情報に関連付ける理論フレームワークを提案する。
我々は、多様体幾何学と文脈相関に依存する文脈依存多様体容量の正確な公式を導出する。
我々のフレームワークの表現性の向上は、階層階層の初期段階のディープネットワークにおける表現再構成を捉えるが、以前は分析にはアクセスできない。
論文 参考訳(メタデータ) (2024-05-10T23:37:31Z) - Modeling Spatio-temporal Dynamical Systems with Neural Discrete Learning
and Levels-of-Experts [33.335735613579914]
本稿では,ビデオフレームなどの観測結果に基づいて,時間・動的システムの状態変化をモデル化し,推定することの課題に対処する。
本稿では、一般的な物理プロセスの法則をデータ駆動方式で捉えるために、ユニバーサルエキスパートモジュール、すなわち光フロー推定コンポーネントを提案する。
我々は、既存のSOTAベースラインと比較して、提案フレームワークが大きなパフォーマンスマージンを達成することを示すため、広範囲な実験と改善を実施している。
論文 参考訳(メタデータ) (2024-02-06T06:27:07Z) - Cumulative Distribution Function based General Temporal Point Processes [49.758080415846884]
CuFunモデルは、累積分布関数(CDF)を中心に回転するTPPに対する新しいアプローチを表す
提案手法は従来のTPPモデリングに固有のいくつかの重要な問題に対処する。
コントリビューションには、先駆的なCDFベースのTPPモデルの導入、過去の事象情報を将来の事象予測に組み込む方法論の開発が含まれている。
論文 参考訳(メタデータ) (2024-02-01T07:21:30Z) - Deep graph kernel point processes [17.74234892097879]
本稿では,グラフ上の離散的なイベントデータに対する新たなポイントプロセスモデルを提案する。
キーとなるアイデアは、グラフニューラルネットワーク(GNN)による影響カーネルを表現して、基盤となるグラフ構造をキャプチャすることだ。
ニューラルネットワークを用いた条件強度関数を直接モデル化することに焦点を当てた以前の研究と比較して、カーネルのプレゼンテーションでは、繰り返し発生する事象の影響パターンをより効果的に表現している。
論文 参考訳(メタデータ) (2023-06-20T06:15:19Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Spatio-temporal point processes with deep non-stationary kernels [18.10670233156497]
我々は、非定常時間点過程をモデル化できる新しいディープ非定常影響カーネルを開発した。
主な考え方は、影響核を新しい一般的な低ランク分解と近似することである。
また,ログバリアペナルティを導入して条件強度の非負性制約を維持するための新たなアプローチも採っている。
論文 参考訳(メタデータ) (2022-11-21T04:49:39Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。