論文の概要: Towards practicable Machine Learning development using AI Engineering Blueprints
- arxiv url: http://arxiv.org/abs/2504.06391v1
- Date: Tue, 08 Apr 2025 19:28:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:07:14.246045
- Title: Towards practicable Machine Learning development using AI Engineering Blueprints
- Title(参考訳): AIエンジニアリング・ブループリントを用いた実践可能な機械学習開発に向けて
- Authors: Nicolas Weeger, Annika Stiehl, Jóakim vom Kistowski, Stefan Geißelsöder, Christian Uhl,
- Abstract要約: 中小規模企業(中小企業)は、製品やプロセスにAIを実装する際に課題に直面します。
本稿では,プロプライエタリ機械学習(ML)モデル作成のための青写真の開発を目的とした研究計画を提案する。
- 参考スコア(独自算出の注目度): 0.8654896256058138
- License:
- Abstract: The implementation of artificial intelligence (AI) in business applications holds considerable promise for significant improvements. The development of AI systems is becoming increasingly complex, thereby underscoring the growing importance of AI engineering and MLOps techniques. Small and medium-sized enterprises (SMEs) face considerable challenges when implementing AI in their products or processes. These enterprises often lack the necessary resources and expertise to develop, deploy, and operate AI systems that are tailored to address their specific problems. Given the lack of studies on the application of AI engineering practices, particularly in the context of SMEs, this paper proposes a research plan designed to develop blueprints for the creation of proprietary machine learning (ML) models using AI engineering and MLOps practices. These blueprints enable SMEs to develop, deploy, and operate AI systems by providing reference architectures and suitable automation approaches for different types of ML. The efficacy of the blueprints is assessed through their application to a series of field projects. This process gives rise to further requirements and additional development loops for the purpose of generalization. The benefits of using the blueprints for organizations are demonstrated by observing the process of developing ML models and by conducting interviews with the developers.
- Abstract(参考訳): ビジネスアプリケーションにおける人工知能(AI)の実装は、大幅な改善を約束している。
AIシステムの開発はますます複雑になりつつあるため、AIエンジニアリングとMLOps技術の重要性が増している。
中小規模企業(中小企業)は、製品やプロセスにAIを実装する際に、かなりの課題に直面します。
これらの企業は、特定の問題に対処するように調整されたAIシステムを開発し、デプロイし、運用するために必要なリソースや専門知識を欠いていることが多い。
本稿では、AIエンジニアリングプラクティス、特に中小企業の文脈におけるAIエンジニアリングプラクティスの適用に関する研究の欠如を踏まえ、AIエンジニアリングとMLOpsプラクティスを用いたプロプライエタリな機械学習(ML)モデル作成のための青写真の開発を目的とした研究計画を提案する。
これらの青写真により、中小企業は、さまざまなタイプのMLに対して、参照アーキテクチャと適切な自動化アプローチを提供することで、AIシステムを開発、デプロイ、運用することができる。
青写真の有効性は、一連のフィールドプロジェクトに適用することで評価される。
このプロセスは、一般化のためにさらなる要求と追加の開発ループをもたらす。
組織にブループリントを使用することの利点は、MLモデルの開発プロセスを観察し、開発者とのインタビューを行うことによって示される。
関連論文リスト
- Generative AI Application for Building Industry [10.154329382433213]
本稿では,建築産業における生成型AI技術,特に大規模言語モデル(LLM)の変容の可能性について検討する。
この研究は、LLMがいかに労働集約的なプロセスを自動化し、建築プラクティスの効率、正確性、安全性を大幅に改善できるかを強調している。
論文 参考訳(メタデータ) (2024-10-01T21:59:08Z) - Next-Gen Software Engineering. Big Models for AI-Augmented Model-Driven Software Engineering [0.0]
本稿は、AIに強化されたソフトウェア工学の現状の概要を提供し、対応する分類学であるAI4SEを開発する。
SEにおけるAI支援ビッグデータのビジョンは、ソフトウェア開発の文脈において両方のアプローチに固有の利点を活かすことを目的としている。
論文 参考訳(メタデータ) (2024-09-26T16:49:57Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Software engineering for artificial intelligence and machine learning
software: A systematic literature review [6.681725960709127]
本研究は,AI/MLシステムの開発において,ソフトウェア工学がどのように応用されてきたかを検討することを目的とする。
プロフェッショナルが直面する主な課題は、テスト、AIソフトウェアの品質、データ管理といった分野だ。
論文 参考訳(メタデータ) (2020-11-07T11:06:28Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z) - Towards CRISP-ML(Q): A Machine Learning Process Model with Quality
Assurance Methodology [53.063411515511056]
本稿では,機械学習アプリケーション開発のためのプロセスモデルを提案する。
第1フェーズでは、データの可用性がプロジェクトの実現可能性に影響を与えることが多いため、ビジネスとデータの理解が結合されます。
第6フェーズでは、機械学習アプリケーションの監視とメンテナンスに関する最先端のアプローチがカバーされている。
論文 参考訳(メタデータ) (2020-03-11T08:25:49Z) - Engineering AI Systems: A Research Agenda [9.84673609667263]
私たちは、企業が機械学習を採用する際に経験する典型的な進化パターンの概念化を提供します。
論文の主なコントリビューションは、MLソリューションを取り巻く重要なエンジニアリング課題の概要を提供する、AIエンジニアリングに関する研究アジェンダである。
論文 参考訳(メタデータ) (2020-01-16T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。