論文の概要: Deep Fair Learning: A Unified Framework for Fine-tuning Representations with Sufficient Networks
- arxiv url: http://arxiv.org/abs/2504.06470v1
- Date: Tue, 08 Apr 2025 22:24:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:07:37.835907
- Title: Deep Fair Learning: A Unified Framework for Fine-tuning Representations with Sufficient Networks
- Title(参考訳): Deep Fair Learning: 不十分なネットワークによる微調整表現のための統一フレームワーク
- Authors: Enze Shi, Linglong Kong, Bei Jiang,
- Abstract要約: 本研究では,十分な次元削減と深層学習を統合し,公正かつ情報的表現を構築するフレームワークを提案する。
微調整中に新たなペナルティ項を導入することにより、センシティブな属性と学習された表現との間の条件付き独立性を強制する。
提案手法は, 公平性と実用性とのバランスが良好であり, 最先端のベースラインを著しく上回っている。
- 参考スコア(独自算出の注目度): 8.616743904155419
- License:
- Abstract: Ensuring fairness in machine learning is a critical and challenging task, as biased data representations often lead to unfair predictions. To address this, we propose Deep Fair Learning, a framework that integrates nonlinear sufficient dimension reduction with deep learning to construct fair and informative representations. By introducing a novel penalty term during fine-tuning, our method enforces conditional independence between sensitive attributes and learned representations, addressing bias at its source while preserving predictive performance. Unlike prior methods, it supports diverse sensitive attributes, including continuous, discrete, binary, or multi-group types. Experiments on various types of data structure show that our approach achieves a superior balance between fairness and utility, significantly outperforming state-of-the-art baselines.
- Abstract(参考訳): 偏りのあるデータ表現は不公平な予測につながることが多いため、機械学習における公平性の確保は重要かつ困難な課題である。
そこで本研究では,非線型な十分な次元削減と深層学習を統合し,公平かつ情報的な表現を構築するためのフレームワークであるDeep Fair Learningを提案する。
微調整中に新たなペナルティ項を導入することにより,予測性能を保ちながら,学習した属性とセンシティブな属性の独立性を保ちながら,そのソースにおけるバイアスに対処する。
従来のメソッドとは異なり、連続型、離散型、バイナリ型、マルチグループ型など、さまざまな機密属性をサポートする。
各種データ構造の実験により,本手法は公正性と実用性とのバランスが良好であることを示し,最先端のベースラインを著しく上回る結果となった。
関連論文リスト
- An Attention-based Framework for Fair Contrastive Learning [2.1605931466490795]
そこで本稿では,バイアスを考慮したインタラクションをモデル化するための注意機構を用いた,公正なコントラスト学習のための新しい手法を提案する。
我々の注意機構は、モデルに相反するバイアスを発生させるサンプルを避け、意味論的に意味のある表現を学習するのに役立つバイアスを誘発するサンプルに焦点をあてる。
論文 参考訳(メタデータ) (2024-11-22T07:11:35Z) - Model Debiasing via Gradient-based Explanation on Representation [14.673988027271388]
本稿では,デリケートな属性やプロキシな属性に関して,デバイアスを行う新しいフェアネスフレームワークを提案する。
我々のフレームワークは、過去の最先端のアプローチよりも、構造化されていないデータセットと構造化されたデータセットの公平性と正確なトレードオフを達成しています。
論文 参考訳(メタデータ) (2023-05-20T11:57:57Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
現実世界に展開された機械学習アルゴリズムが不公平さや意図しない社会的結果をもたらすことはないことを保証することが重要である。
本稿では,カーネルHilbert Spacesの相互共分散演算子上に構築されたフェアネス尺度であるFairCOCCOを紹介する。
実世界のデータセットにおける予測能力と公正性のバランスをとる上で、最先端技術に対する一貫した改善を実証的に示す。
論文 参考訳(メタデータ) (2022-11-11T11:28:46Z) - Learning Fair Representation via Distributional Contrastive
Disentanglement [9.577369164287813]
公正な表現を学ぶことは、公平性を達成するか、センシティブな情報を悪用するために不可欠である。
本稿では,FarconVAE(Contrastive Variational AutoEncoder)を用いたFAir表現学習手法を提案する。
フェアネス、事前訓練されたモデルデバイアス、および様々なモダリティからの領域一般化タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-17T12:58:58Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
対照的な学習を通してテキスト分類のための等化オッズとして知られる公平性の概念を満たす学習公正表現について研究する。
具体的には、まず、公正性制約のある学習表現と条件付き教師付きコントラスト目的との間の関係を理論的に分析する。
論文 参考訳(メタデータ) (2022-05-23T17:38:30Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
画像とテキストを共同で表現するマルチモーダル表現学習手法が提案されている。
これらの手法は,大規模マルチモーダル事前学習から高レベルな意味情報を取得することにより,優れた性能を実現する。
そこで本稿では,非バイアスのDense Contrastive Visual-Linguistic Pretrainingを提案する。
論文 参考訳(メタデータ) (2021-09-24T07:20:13Z) - Contrastive Learning for Fair Representations [50.95604482330149]
訓練された分類モデルは、意図せずバイアスのある表現や予測につながる可能性がある。
対戦訓練のような既存の分類モデルのデバイアス化手法は、訓練に高価であり、最適化が困難であることが多い。
比較学習を取り入れたバイアス軽減手法を提案し、同じクラスラベルを共有するインスタンスに類似した表現を推奨する。
論文 参考訳(メタデータ) (2021-09-22T10:47:51Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - FairNN- Conjoint Learning of Fair Representations for Fair Decisions [40.05268461544044]
フェアネス認識学習のための結合特徴表現と分類を行うニューラルネットワークであるFairNNを提案する。
各種データセットに対する実験により,表現学習や教師あり学習における不公平性の分離処理よりも,このような共同アプローチの方が優れていることが示された。
論文 参考訳(メタデータ) (2020-04-05T12:08:30Z) - Fairness by Learning Orthogonal Disentangled Representations [50.82638766862974]
不変表現問題に対する新しい非絡み合い手法を提案する。
エントロピーによりセンシティブな情報に依存しない有意義な表現を強制する。
提案手法は5つの公開データセットで評価される。
論文 参考訳(メタデータ) (2020-03-12T11:09:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。