Holistic Fusion: Task- and Setup-Agnostic Robot Localization and State Estimation with Factor Graphs
- URL: http://arxiv.org/abs/2504.06479v1
- Date: Tue, 08 Apr 2025 22:54:52 GMT
- Title: Holistic Fusion: Task- and Setup-Agnostic Robot Localization and State Estimation with Factor Graphs
- Authors: Julian Nubert, Turcan Tuna, Jonas Frey, Cesar Cadena, Katherine J. Kuchenbecker, Shehryar Khattak, Marco Hutter,
- Abstract summary: This work introduces a flexible open-source solution for task- and setup-agnostic multimodal sensor fusion.<n> Holistic Fusion (HF) formulates sensor fusion as a combined estimation problem of i) the local and global robot state and ii) a (theoretically unlimited) number of dynamic context variables.<n> HF enables low-latency and smooth online state estimation on typical robot hardware while simultaneously providing low-drift global localization at the IMU measurement rate.
- Score: 19.359422457413576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Seamless operation of mobile robots in challenging environments requires low-latency local motion estimation (e.g., dynamic maneuvers) and accurate global localization (e.g., wayfinding). While most existing sensor-fusion approaches are designed for specific scenarios, this work introduces a flexible open-source solution for task- and setup-agnostic multimodal sensor fusion that is distinguished by its generality and usability. Holistic Fusion formulates sensor fusion as a combined estimation problem of i) the local and global robot state and ii) a (theoretically unlimited) number of dynamic context variables, including automatic alignment of reference frames; this formulation fits countless real-world applications without any conceptual modifications. The proposed factor-graph solution enables the direct fusion of an arbitrary number of absolute, local, and landmark measurements expressed with respect to different reference frames by explicitly including them as states in the optimization and modeling their evolution as random walks. Moreover, local smoothness and consistency receive particular attention to prevent jumps in the robot state belief. HF enables low-latency and smooth online state estimation on typical robot hardware while simultaneously providing low-drift global localization at the IMU measurement rate. The efficacy of this released framework is demonstrated in five real-world scenarios on three robotic platforms, each with distinct task requirements.
Related papers
- Graph-Based Multi-Modal Sensor Fusion for Autonomous Driving [3.770103075126785]
We introduce a novel approach to multi-modal sensor fusion, focusing on developing a graph-based state representation.
We present a Sensor-Agnostic Graph-Aware Kalman Filter, the first online state estimation technique designed to fuse multi-modal graphs.
We validate the effectiveness of our proposed framework through extensive experiments conducted on both synthetic and real-world driving datasets.
arXiv Detail & Related papers (2024-11-06T06:58:17Z) - RING#: PR-by-PE Global Localization with Roto-translation Equivariant Gram Learning [20.688641105430467]
Global localization is crucial in autonomous driving and robotics applications when GPS signals are unreliable.
Most approaches achieve global localization by sequential place recognition (PR) and pose estimation (PE)
We introduce a new paradigm, PR-by-PE localization, which bypasses the need for separate place recognition by directly deriving it from pose estimation.
We propose RING#, an end-to-end PR-by-PE localization network that operates in the bird's-eye-view (BEV) space, compatible with both vision and LiDAR sensors.
arXiv Detail & Related papers (2024-08-30T18:42:53Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - Local Action-Guided Motion Diffusion Model for Text-to-Motion Generation [52.87672306545577]
Existing motion generation methods primarily focus on the direct synthesis of global motions.
We propose the local action-guided motion diffusion model, which facilitates global motion generation by utilizing local actions as fine-grained control signals.
Our method provides flexibility in seamlessly combining various local actions and continuous guiding weight adjustment.
arXiv Detail & Related papers (2024-07-15T08:35:00Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL) aims to train high-quality models in collaboration with distributed clients while not uploading their local data.
There is still a considerable gap between the flourishing FL research and real-world scenarios, mainly caused by the characteristics of heterogeneous devices and its scales.
We propose an efficient and scalable prototyping system for real-world cross-device FL, FS-Real.
arXiv Detail & Related papers (2023-03-23T15:37:17Z) - A Real-Time Fusion Framework for Long-term Visual Localization [7.606637557727453]
We present an efficient client-server visual localization architecture that fuses global and local pose estimations.
We conduct the evaluations on two typical open-source benchmarks, 4Seasons and OpenLORIS.
arXiv Detail & Related papers (2022-10-18T11:13:20Z) - A Robot Web for Distributed Many-Device Localisation [18.417301483203996]
We show that a distributed network of robots can collaborate to globally localise via efficient ad-hoc peer to peer communication.
We show in simulations with up to 1000 robots interacting in arbitrary patterns that our solution convergently achieves global accuracy as accurate as a non-linear factor graph solver.
arXiv Detail & Related papers (2022-02-07T16:00:25Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multi is the first multi-robot system that is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures.
We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots.
arXiv Detail & Related papers (2021-06-28T03:56:40Z) - Learning Selective Sensor Fusion for States Estimation [47.76590539558037]
We propose SelectFusion, an end-to-end selective sensor fusion module.
During prediction, the network is able to assess the reliability of the latent features from different sensor modalities.
We extensively evaluate all fusion strategies in both public datasets and on progressively degraded datasets.
arXiv Detail & Related papers (2019-12-30T20:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.