A Robot Web for Distributed Many-Device Localisation
- URL: http://arxiv.org/abs/2202.03314v2
- Date: Fri, 26 Jan 2024 18:04:15 GMT
- Title: A Robot Web for Distributed Many-Device Localisation
- Authors: Riku Murai, Joseph Ortiz, Sajad Saeedi, Paul H.J. Kelly, and Andrew J.
Davison
- Abstract summary: We show that a distributed network of robots can collaborate to globally localise via efficient ad-hoc peer to peer communication.
We show in simulations with up to 1000 robots interacting in arbitrary patterns that our solution convergently achieves global accuracy as accurate as a non-linear factor graph solver.
- Score: 18.417301483203996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that a distributed network of robots or other devices which make
measurements of each other can collaborate to globally localise via efficient
ad-hoc peer to peer communication. Our Robot Web solution is based on Gaussian
Belief Propagation on the fundamental non-linear factor graph describing the
probabilistic structure of all of the observations robots make internally or of
each other, and is flexible for any type of robot, motion or sensor. We define
a simple and efficient communication protocol which can be implemented by the
publishing and reading of web pages or other asynchronous communication
technologies. We show in simulations with up to 1000 robots interacting in
arbitrary patterns that our solution convergently achieves global accuracy as
accurate as a centralised non-linear factor graph solver while operating with
high distributed efficiency of computation and communication. Via the use of
robust factors in GBP, our method is tolerant to a high percentage of faults in
sensor measurements or dropped communication packets.
Related papers
- LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Asynchronous Perception-Action-Communication with Graph Neural Networks [93.58250297774728]
Collaboration in large robot swarms to achieve a common global objective is a challenging problem in large environments.
The robots must execute a Perception-Action-Communication loop -- they perceive their local environment, communicate with other robots, and take actions in real time.
Recently, this has been addressed using Graph Neural Networks (GNNs) for applications such as flocking and coverage control.
This paper proposes a framework for asynchronous PAC in robot swarms, where decentralized GNNs are used to compute navigation actions and generate messages for communication.
arXiv Detail & Related papers (2023-09-18T21:20:50Z) - Simulation of robot swarms for learning communication-aware coordination [0.0]
We train end-to-end Neural Networks that take as input local observations obtained from an omniscient centralised controller.
Experiments are run in Enki, a high-performance open-source simulator for planar robots.
arXiv Detail & Related papers (2023-02-25T17:17:40Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Kimera-Multi: Robust, Distributed, Dense Metric-Semantic SLAM for
Multi-Robot Systems [92.26462290867963]
Kimera-Multi is the first multi-robot system that is robust and capable of identifying and rejecting incorrect inter and intra-robot loop closures.
We demonstrate Kimera-Multi in photo-realistic simulations, SLAM benchmarking datasets, and challenging outdoor datasets collected using ground robots.
arXiv Detail & Related papers (2021-06-28T03:56:40Z) - Scalable Multi-Robot System for Non-myopic Spatial Sampling [9.37678298330157]
This paper presents a scalable distributed multi-robot planning algorithm for non-uniform sampling of spatial fields.
We analyze the effect of communication between multiple robots, acting independently, on the overall sampling performance of the team.
arXiv Detail & Related papers (2021-05-20T20:30:10Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
arXiv Detail & Related papers (2021-03-08T21:48:55Z) - Who2com: Collaborative Perception via Learnable Handshake Communication [34.29310680302486]
We propose the problem of collaborative perception, where robots can combine their local observations with those of neighboring agents in a learnable way to improve accuracy on a perception task.
Inspired by networking communication protocols, we propose a multi-stage handshake communication mechanism where the neural network can learn to compress relevant information needed for each stage.
We show that for the semantic segmentation task, our handshake communication method significantly improves accuracy by approximately 20% over decentralized baselines, and is comparable to centralized ones using a quarter of the bandwidth.
arXiv Detail & Related papers (2020-03-21T04:16:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.