OPAL: Encoding Causal Understanding of Physical Systems for Robot Learning
- URL: http://arxiv.org/abs/2504.06538v1
- Date: Wed, 09 Apr 2025 02:29:36 GMT
- Title: OPAL: Encoding Causal Understanding of Physical Systems for Robot Learning
- Authors: Daniel Tcheurekdjian, Joshua Klasmeier, Tom Cooney, Christopher McCann, Tyler Fenstermaker,
- Abstract summary: We present OPAL, a vision-language-action architecture that introduces topological constraints to flow matching for robotic control.<n> Experimental results across 10 complex manipulation tasks demonstrate OPAL's superior performance compared to previous approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present OPAL (Operant Physical Agent with Language), a novel vision-language-action architecture that introduces topological constraints to flow matching for robotic control. To do so, we further introduce topological attention. Our approach models action sequences as topologically-structured representations with non-trivial constraints. Experimental results across 10 complex manipulation tasks demonstrate OPAL's superior performance compared to previous approaches, including Octo, OpenVLA, and ${\pi}$0. Our architecture achieves significant improvements in zero-shot performance without requiring task-specific fine-tuning, while reducing inference computational requirements by 42%. The theoretical guarantees provided by our topological approach result in more coherent long-horizon action sequences. Our results highlight the potential of constraining the search space of learning problems in robotics by deriving from fundamental physical laws, and the possibility of using topological attention to embed causal understanding into transformer architectures.
Related papers
- Spectral Architecture Search for Neural Networks [0.0]
We present a novel architecture search protocol which exploits the spectral attributes of the inter-layer transfer matrices.<n>We show that the newly proposed method yields a self-emerging architecture with a minimal degree of expressivity to handle the task under investigation.
arXiv Detail & Related papers (2025-04-01T15:14:30Z) - SDF-TopoNet: A Two-Stage Framework for Tubular Structure Segmentation via SDF Pre-training and Topology-Aware Fine-Tuning [2.3436632098950456]
Key challenge is ensuring topological correctness while maintaining computational efficiency.
We propose textbfSDF-TopoNet, an improved topology-aware segmentation framework.
We show that SDF-TopoNet outperforms existing methods in both topological accuracy and quantitative segmentation metrics.
arXiv Detail & Related papers (2025-03-14T23:54:38Z) - Spatial-Temporal Graph Diffusion Policy with Kinematic Modeling for Bimanual Robotic Manipulation [88.83749146867665]
Existing approaches learn a policy to predict a distant next-best end-effector pose.<n>They then compute the corresponding joint rotation angles for motion using inverse kinematics.<n>We propose Kinematics enhanced Spatial-TemporAl gRaph diffuser.
arXiv Detail & Related papers (2025-03-13T17:48:35Z) - Causality-Aware Transformer Networks for Robotic Navigation [13.719643934968367]
Current research in Visual Navigation reveals opportunities for improvement.
Direct adoption of RNNs and Transformers often overlooks the specific differences between Embodied AI and traditional sequential data modelling.
We propose Causality-Aware Transformer (CAT) Networks for Navigation, featuring a Causal Understanding Module.
arXiv Detail & Related papers (2024-09-04T12:53:26Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - Explainable Equivariant Neural Networks for Particle Physics: PELICAN [51.02649432050852]
PELICAN is a novel permutation equivariant and Lorentz invariant aggregator network.
We present a study of the PELICAN algorithm architecture in the context of both tagging (classification) and reconstructing (regression) Lorentz-boosted top quarks.
We extend the application of PELICAN to the tasks of identifying quark-initiated vs.gluon-initiated jets, and a multi-class identification across five separate target categories of jets.
arXiv Detail & Related papers (2023-07-31T09:08:40Z) - Beyond Multilayer Perceptrons: Investigating Complex Topologies in
Neural Networks [0.12289361708127873]
We explore the impact of network topology on the approximation capabilities of artificial neural networks (ANNs)
We propose a novel methodology for constructing complex ANNs based on various topologies, including Barab'asi-Albert, ErdHos-R'enyi, Watts-Strogatz, and multilayer perceptrons (MLPs)
The constructed networks are evaluated on synthetic datasets generated from manifold learning generators, with varying levels of task difficulty and noise, and on real-world datasets from UCI.
arXiv Detail & Related papers (2023-03-31T09:48:16Z) - GANTL: Towards Practical and Real-Time Topology Optimization with
Conditional GANs and Transfer Learning [0.0]
We present a deep learning method based on generative adversarial networks for generative design exploration.
The proposed method combines the generative power of conditional GANs with the knowledge transfer capabilities of transfer learning methods to predict optimal topologies for unseen boundary conditions.
arXiv Detail & Related papers (2021-05-07T03:13:32Z) - Structured Prediction for CRiSP Inverse Kinematics Learning with
Misspecified Robot Models [39.513301957826435]
We introduce a structured prediction algorithm that combines a data-driven strategy with a forward kinematics function.
The proposed approach ensures that predicted joint configurations are well within the robot's constraints.
arXiv Detail & Related papers (2021-02-25T15:39:33Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z) - ROME: Robustifying Memory-Efficient NAS via Topology Disentanglement and
Gradient Accumulation [106.04777600352743]
Differentiable architecture search (DARTS) is largely hindered by its substantial memory cost since the entire supernet resides in the memory.
The single-path DARTS comes in, which only chooses a single-path submodel at each step.
While being memory-friendly, it also comes with low computational costs.
We propose a new algorithm called RObustifying Memory-Efficient NAS (ROME) to give a cure.
arXiv Detail & Related papers (2020-11-23T06:34:07Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Belief Propagation Reloaded: Learning BP-Layers for Labeling Problems [83.98774574197613]
We take one of the simplest inference methods, a truncated max-product Belief propagation, and add what is necessary to make it a proper component of a deep learning model.
This BP-Layer can be used as the final or an intermediate block in convolutional neural networks (CNNs)
The model is applicable to a range of dense prediction problems, is well-trainable and provides parameter-efficient and robust solutions in stereo, optical flow and semantic segmentation.
arXiv Detail & Related papers (2020-03-13T13:11:35Z) - Local Propagation in Constraint-based Neural Network [77.37829055999238]
We study a constraint-based representation of neural network architectures.
We investigate a simple optimization procedure that is well suited to fulfil the so-called architectural constraints.
arXiv Detail & Related papers (2020-02-18T16:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.