論文の概要: Do Reasoning Models Show Better Verbalized Calibration?
- arxiv url: http://arxiv.org/abs/2504.06564v1
- Date: Wed, 09 Apr 2025 03:58:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:06:47.092105
- Title: Do Reasoning Models Show Better Verbalized Calibration?
- Title(参考訳): Reasoning Modelsは動詞化校正を改善するか?
- Authors: Qingcheng Zeng, Weihao Xuan, Leyang Cui, Rob Voigt,
- Abstract要約: 長い推理トレース上での微調整蒸留を指導したLRMのキャリブレーション特性について検討した。
以上の結果から,LEMは複雑な推論タスクにおいて,精度と信頼性の校正の両方において,命令調整モデルよりも有意に優れていた。
本研究は,LLMの信頼性・自己認識出力生成能力を向上させる上で,推論指向のRLトレーニングが潜在的に重要な役割を担っていることを示すものである。
- 参考スコア(独自算出の注目度): 19.776645881640178
- License:
- Abstract: Large reasoning models (LRMs) have recently shown impressive capabilities in complex reasoning by leveraging increased test-time computation and exhibiting behaviors akin to human-like deliberation. Despite these advances, it remains an open question whether LRMs are better calibrated - particularly in their verbalized confidence - compared to instruction-tuned counterparts. In this paper, we investigate the calibration properties of LRMs trained via supervised fine-tuning distillation on long reasoning traces (henceforth SFT reasoning models) and outcome-based reinforcement learning for reasoning (henceforth RL reasoning models) across diverse domains. Our findings reveal that LRMs significantly outperform instruction-tuned models on complex reasoning tasks in both accuracy and confidence calibration. In contrast, we find surprising trends in the domain of factuality in particular. On factuality tasks, while Deepseek-R1 shows strong calibration behavior, smaller QwQ-32B shows no improvement over instruct models; moreover, SFT reasoning models display worse calibration (greater overconfidence) compared to instruct models. Our results provide evidence for a potentially critical role of reasoning-oriented RL training in improving LLMs' capacity for generating trustworthy, self-aware outputs.
- Abstract(参考訳): 大規模推論モデル(LRM)は、最近、テスト時間計算の増大を活用し、人間に似た振る舞いを示すことで、複雑な推論において印象的な能力を示した。
これらの進歩にもかかわらず、LRMは(特に言語化された自信において)教育訓練を受けたものよりも、よりキャリブレーションが良いのかという疑問が残る。
本稿では, 長期推理トレース(Henceforth SFT推論モデル)と結果ベース強化学習(henceforth RL推論モデル)を用いた細調整蒸留法により訓練したLEMの校正特性について検討する。
以上の結果から,LEMは複雑な推論タスクにおいて,精度と信頼性の校正の両方において,命令調整モデルよりも有意に優れていた。
対照的に、事実性の領域では意外な傾向が見られます。
事実性タスクでは、Deepseek-R1は強力なキャリブレーション動作を示すが、より小さなQwQ-32Bはインストラクションモデルよりも改善されていない。
本研究は,LLMの信頼性・自己認識出力生成能力を向上させる上で,推論指向のRLトレーニングが潜在的に重要な役割を担っていることを示すものである。
関連論文リスト
- SD-LoRA: Scalable Decoupled Low-Rank Adaptation for Class Incremental Learning [73.93639228235622]
基礎モデルによる継続的な学習は、シーケンシャルなタスクに取り組むための事前トレーニング中に得られた豊富な知識を活用するための有望なパラダイムとして現れてきた。
既存のプロンプトベースおよびローランク適応ベース(LoRAベース)メソッドでは、プロンプト/ローラプールの拡張や、以前のタスクのサンプルの保持がしばしば必要である。
クラスインクリメンタル学習のためのスケーラブルデカップリングLoRA(SD-LoRA)を提案する。
論文 参考訳(メタデータ) (2025-01-22T20:00:41Z) - The Reliability Paradox: Exploring How Shortcut Learning Undermines Language Model Calibration [5.616884466478886]
プレトレーニング言語モデル(PLM)は、自然言語処理の分野で大きなパフォーマンス向上を実現している。
近年の研究では、PLMは誤校正に悩まされており、これらのモデルによる信頼度推定の精度の欠如が示唆されている。
本稿では,低校正誤差が言語モデルの信頼性決定ルールを意味するか否かを考察する。
論文 参考訳(メタデータ) (2024-12-17T08:04:28Z) - Improve Vision Language Model Chain-of-thought Reasoning [86.83335752119741]
視覚言語モデル(VLM)におけるチェーン・オブ・シント(CoT)推論は、解釈可能性と信頼性を向上させるために不可欠である。
我々は,より詳細な回答を必要とする推論タスクに対して,短時間でVLMを訓練することはよくないことを示す。
論文 参考訳(メタデータ) (2024-10-21T17:00:06Z) - Investigating the Impact of Model Complexity in Large Language Models [3.7919508292745676]
事前訓練された微調整パラダイムに基づく大規模言語モデル(LLM)は、自然言語処理タスクの解決において重要な役割を担っている。
本稿では,自己回帰 LLM に着目し,HMM (Hidden Markov Models) を用いたモデリングを提案する。
論文 参考訳(メタデータ) (2024-10-01T13:53:44Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
本稿では,複数サンプルモデル生成系の分布から信頼度を導出する可能性について,一貫性の3つの尺度を用いて検討する。
その結果、一貫性に基づくキャリブレーション手法は、既存のポストホック手法よりも優れていることがわかった。
種々のLMの特性に合わせて,キャリブレーションに適した整合性指標を選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-02-21T16:15:20Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
ディープラーニングにおけるミススキャリブレーションとは、予測された信頼とパフォーマンスの間には相違がある、という意味である。
トレーニング中に何を学ぶべきかを学ぶことを目的とした動的正規化(DReg)を導入し、信頼度調整のトレードオフを回避する。
論文 参考訳(メタデータ) (2024-02-13T11:25:20Z) - CATfOOD: Counterfactual Augmented Training for Improving Out-of-Domain
Performance and Calibration [59.48235003469116]
データの増大はOOD性能を継続的に向上させることを示す。
また, CF拡張モデルのキャリブレーションが容易な場合, 重要度を割り当てる場合, エントロピーがはるかに低いことを示す。
論文 参考訳(メタデータ) (2023-09-14T16:16:40Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
本研究では,事前学習損失,教師付きデータ量,拡張データ量が教師付きLDMの推論性能に与える影響について検討する。
複数のモデルからの拒絶サンプルは、LLaMA-7BをGSM8Kの49.3%の精度に押し上げ、監督された微調整(SFT)の精度を35.9%上回る結果となった。
論文 参考訳(メタデータ) (2023-08-03T15:34:01Z) - Does Self-Rationalization Improve Robustness to Spurious Correlations? [19.553357015260687]
自己合理化のためのトレーニングモデルが、正しい理由でタスクを解決するための学習に役立つかどうかを問う。
細調整エンコーダデコーダとデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデオーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダデコーダのロバスト性の評価を行った。
自己組織化は低リソース環境での相関関係を刺激することでロバスト性を改善することができるが、高リソース環境ではロバスト性を損なう傾向にある。
論文 参考訳(メタデータ) (2022-10-24T19:54:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。