論文の概要: Domain Generalization via Discrete Codebook Learning
- arxiv url: http://arxiv.org/abs/2504.06572v1
- Date: Wed, 09 Apr 2025 04:19:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:06:29.441300
- Title: Domain Generalization via Discrete Codebook Learning
- Title(参考訳): 離散コードブック学習によるドメインの一般化
- Authors: Shaocong Long, Qianyu Zhou, Xikun Jiang, Chenhao Ying, Lizhuang Ma, Yuan Luo,
- Abstract要約: ドメイン一般化(DG)は、モデルの一般化可能性を高めるために、様々な環境にまたがる分散シフトに対処する試みである。
ドメイン一般化(DDG)と呼ばれる新しいDG学習パラダイムを導入する。
DDGは、コードブックを使用して、特徴マップを離散的なコードワードに量子化し、共有表現空間における意味等価情報を整合させることを提案する。
- 参考スコア(独自算出の注目度): 30.169237668528947
- License:
- Abstract: Domain generalization (DG) strives to address distribution shifts across diverse environments to enhance model's generalizability. Current DG approaches are confined to acquiring robust representations with continuous features, specifically training at the pixel level. However, this DG paradigm may struggle to mitigate distribution gaps in dealing with a large space of continuous features, rendering it susceptible to pixel details that exhibit spurious correlations or noise. In this paper, we first theoretically demonstrate that the domain gaps in continuous representation learning can be reduced by the discretization process. Based on this inspiring finding, we introduce a novel learning paradigm for DG, termed Discrete Domain Generalization (DDG). DDG proposes to use a codebook to quantize the feature map into discrete codewords, aligning semantic-equivalent information in a shared discrete representation space that prioritizes semantic-level information over pixel-level intricacies. By learning at the semantic level, DDG diminishes the number of latent features, optimizing the utilization of the representation space and alleviating the risks associated with the wide-ranging space of continuous features. Extensive experiments across widely employed benchmarks in DG demonstrate DDG's superior performance compared to state-of-the-art approaches, underscoring its potential to reduce the distribution gaps and enhance the model's generalizability.
- Abstract(参考訳): ドメイン一般化(DG)は、モデルの一般化可能性を高めるために、様々な環境にまたがる分散シフトに対処する試みである。
現在のDGアプローチは、連続的な特徴を持つ堅牢な表現、特にピクセルレベルでのトレーニングの獲得に限られている。
しかし、このDGパラダイムは、連続した特徴の広い空間を扱う際の分布ギャップを軽減するのに苦労するかもしれない。
本稿では,まず,連続表現学習における領域ギャップを離散化処理によって低減できることを理論的に示す。
そこで本研究では,離散領域一般化(DDG)と呼ばれる新しいDG学習パラダイムを導入する。
DDGは、コードブックを使って特徴マップを離散コードワードに量子化し、ピクセルレベルの複雑さよりもセマンティックレベルの情報を優先する共有離散表現空間において意味等価情報を整列させることを提案する。
意味レベルで学習することで、DDGは潜伏する特徴の数を減らし、表現空間の利用を最適化し、連続した特徴の広い範囲に関連するリスクを軽減する。
DGで広く採用されているベンチマークの広範な実験は、DDGが最先端のアプローチよりも優れた性能を示し、分布ギャップを減らし、モデルの一般化性を高める可能性を示している。
関連論文リスト
- Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
教師なしの領域一般化は急速に注目されているが、まだ十分に研究されていない。
Disentangled Masked Auto (DisMAE) は、本質的な特徴を忠実に示す不整合表現を発見することを目的としている。
DisMAEは、セマンティックで軽量な変分エンコーダを備えた非対称なデュアルブランチアーキテクチャを共同で訓練する。
論文 参考訳(メタデータ) (2024-07-10T11:11:36Z) - Towards Domain-Specific Features Disentanglement for Domain
Generalization [23.13095840134744]
そこで本研究では,見過ごされがちな領域特化特徴を生かした,新しいコントラッシブ・ベース・ディコンタンジメント法CDDGを提案する。
具体的には、CDDGは、潜在空間においてそれらを活用することによって、固有の排他的特徴を分離することを学ぶ。
各種ベンチマークデータセットを用いて行った実験は,他の最先端手法と比較して,本手法の優位性を示した。
論文 参考訳(メタデータ) (2023-10-04T17:51:02Z) - Implicit Semantic Augmentation for Distance Metric Learning in Domain
Generalization [25.792285194055797]
ドメイン一般化(DG)は、1つ以上の異なるが関連するソースドメインのモデルを、目に見えないターゲットドメインに一般化することを目的としている。
既存のDG手法は、モデルの一般化能力のために、ソースドメインの多様性を促進する。
この研究は、特徴空間における暗黙のセマンティック拡張を適用して、ソースドメインの多様性を捉える。
論文 参考訳(メタデータ) (2022-08-02T11:37:23Z) - On Certifying and Improving Generalization to Unseen Domains [87.00662852876177]
ドメインの一般化は、テスト時に遭遇した見知らぬドメインのパフォーマンスが高いモデルを学ぶことを目的としています。
いくつかのベンチマークデータセットを使用して、DGアルゴリズムを包括的に評価することは困難である。
我々は,任意のDG手法の最悪の性能を効率的に証明できる普遍的な認証フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-24T16:29:43Z) - Localized Adversarial Domain Generalization [83.4195658745378]
対数領域の一般化は、領域の一般化に対する一般的なアプローチである。
空間コンパクト性維持(LADG)を用いた局所対向領域の一般化を提案する。
我々はWilds DGベンチマークで包括的な実験を行い、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2022-05-09T08:30:31Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
マルチモーダル分布を再正規化するために,スタイル駆動型ドメイン固有正規化(SDNorm)を導入する。
組込み空間における関係モデリングを行うために,プロトタイプ表現,クラスセントロイドを利用する。
4つの標準ドメイン一般化ベンチマークの実験により、COMENはドメインの監督なしに最先端のパフォーマンスを上回ることが判明した。
論文 参考訳(メタデータ) (2022-03-24T11:54:59Z) - Reappraising Domain Generalization in Neural Networks [8.06370138649329]
機械学習アルゴリズムのドメイン一般化(DG)は、複数のトレーニング分布からドメインに依存しない仮説を学習する能力として定義される。
経験的リスク最小化(ERM)ベースラインは,既存のDG手法を一貫して上回っていることがわかった。
そこで我々は,各クラスに対してランダムにドメインを選択して,それをテスト用として保持する,クラスワイズDGの定式化を提案する。
論文 参考訳(メタデータ) (2021-10-15T10:06:40Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
ドメイン一般化(DG)に基づく対スプーフィングアプローチは、予期せぬシナリオの堅牢性のために注目を集めています。
ドメインダイナミック調整メタラーニング(D2AM)についてドメインラベルを使わずに提案する。
この制限を克服するため,ドメインダイナミック調整メタラーニング(D2AM)を提案する。
論文 参考訳(メタデータ) (2021-05-06T06:04:59Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
ドメイン一般化(DG)は、人物再識別(Re-ID)を扱うための有望なソリューションとして機能する
本稿では、複数のソースドメインの分布を選択的に整列させることにより、この問題に対処するDual Distribution Alignment Network(DDAN)を提案する。
大規模なDomain Generalization Re-ID(DG Re-ID)ベンチマークでDDANを評価した。
論文 参考訳(メタデータ) (2020-07-27T00:08:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。