Automated Business Process Analysis: An LLM-Based Approach to Value Assessment
- URL: http://arxiv.org/abs/2504.06600v1
- Date: Wed, 09 Apr 2025 05:52:50 GMT
- Title: Automated Business Process Analysis: An LLM-Based Approach to Value Assessment
- Authors: William De Michele, Abel Armas Cervantes, Lea Frermann,
- Abstract summary: Our paper harnesses Large Language Models (LLMs) to automate value-added analysis.<n>Our method operates in two phases: first, decomposing high-level activities into detailed steps to enable granular analysis, and second, performing a value-added analysis to classify each step according to Lean principles.
- Score: 8.24265045995148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Business processes are fundamental to organizational operations, yet their optimization remains challenging due to the timeconsuming nature of manual process analysis. Our paper harnesses Large Language Models (LLMs) to automate value-added analysis, a qualitative process analysis technique that aims to identify steps in the process that do not deliver value. To date, this technique is predominantly manual, time-consuming, and subjective. Our method offers a more principled approach which operates in two phases: first, decomposing high-level activities into detailed steps to enable granular analysis, and second, performing a value-added analysis to classify each step according to Lean principles. This approach enables systematic identification of waste while maintaining the semantic understanding necessary for qualitative analysis. We develop our approach using 50 business process models, for which we collect and publish manual ground-truth labels. Our evaluation, comparing zero-shot baselines with more structured prompts reveals (a) a consistent benefit of structured prompting and (b) promising performance for both tasks. We discuss the potential for LLMs to augment human expertise in qualitative process analysis while reducing the time and subjectivity inherent in manual approaches.
Related papers
- Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey [64.08485471150486]
This survey examines evaluation methods for large language model (LLM)-based agents in multi-turn conversational settings.
We systematically reviewed nearly 250 scholarly sources, capturing the state of the art from various venues of publication.
arXiv Detail & Related papers (2025-03-28T14:08:40Z) - PanguIR Technical Report for NTCIR-18 AEOLLM Task [12.061652026366591]
Large language models (LLMs) are increasingly critical and challenging to evaluate.<n>Manual evaluation, while comprehensive, is often costly and resource-intensive.<n>automatic evaluation offers greater scalability but is constrained by the limitations of its evaluation criteria.
arXiv Detail & Related papers (2025-03-04T07:40:02Z) - Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback [94.25162866972077]
Step-KTO is a training framework that combines process-level and outcome-level binary feedback.<n>Our experiments show that Step-KTO significantly improves both final answer accuracy and the quality of intermediate reasoning steps.
arXiv Detail & Related papers (2025-01-18T15:38:03Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.<n>In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.<n>This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.<n>We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.<n>We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - WISE: Unraveling Business Process Metrics with Domain Knowledge [0.0]
Anomalies in complex industrial processes are often obscured by high variability and complexity of event data.
We introduce WISE, a novel method for analyzing business process metrics through the integration of domain knowledge, process mining, and machine learning.
We show that WISE enhances automation in business process analysis and effectively detects deviations from desired process flows.
arXiv Detail & Related papers (2024-10-06T07:57:08Z) - A Review of AI and Machine Learning Contribution in Predictive Business Process Management (Process Enhancement and Process Improvement Approaches) [4.499009117849108]
We perform a systematic review of academic literature to investigate the integration of AI/ML in business process management.
In business process management and process map, AI/ML has made significant improvements using operational data on process metrics.
arXiv Detail & Related papers (2024-07-07T18:26:00Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Automatic Discovery of Multi-perspective Process Model using
Reinforcement Learning [7.5989847759545155]
We propose an automatic discovery framework of a multi-perspective process model based on deep Q-Learning.
Our Dual Experience Replay with Experience Distribution (DERED) approach can automatically perform process model discovery steps, conformance check steps, and enhancements steps.
We validate our approach using six real-world event datasets collected in port logistics, steel manufacturing, finance, IT, and government administration.
arXiv Detail & Related papers (2022-11-30T02:18:29Z) - A Technique for Determining Relevance Scores of Process Activities using
Graph-based Neural Networks [0.0]
We develop a technique to determine the relevance scores for process activities with respect to performance measures.
Annotating process models with such relevance scores facilitates a problem-focused analysis of the business process.
We quantitatively evaluate the predictive quality of our technique using four datasets from different domains, to demonstrate the faithfulness of the relevance scores.
arXiv Detail & Related papers (2020-08-07T12:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.