A Cross-Domain Few-Shot Learning Method Based on Domain Knowledge Mapping
- URL: http://arxiv.org/abs/2504.06608v1
- Date: Wed, 09 Apr 2025 06:11:55 GMT
- Title: A Cross-Domain Few-Shot Learning Method Based on Domain Knowledge Mapping
- Authors: Jiajun Chen, Hongpeng Yin, Yifu Yang,
- Abstract summary: In task-based few-shot learning paradigms, it is commonly assumed that different tasks are independently and identically distributed.<n>In real-world scenarios, the distribution encountered in few-shot learning can significantly differ from the distribution of existing data.<n>This paper proposes a new cross-domain few-shot learning approach based on domain knowledge mapping.
- Score: 33.725292192532855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In task-based few-shot learning paradigms, it is commonly assumed that different tasks are independently and identically distributed (i.i.d.). However, in real-world scenarios, the distribution encountered in few-shot learning can significantly differ from the distribution of existing data. Thus, how to effectively leverage existing data knowledge to enable models to quickly adapt to class variations under non-i.i.d. assumptions has emerged as a key research challenge. To address this challenge, this paper proposes a new cross-domain few-shot learning approach based on domain knowledge mapping, applied consistently throughout the pre-training, training, and testing phases. In the pre-training phase, our method integrates self-supervised and supervised losses by maximizing mutual information, thereby mitigating mode collapse. During the training phase, the domain knowledge mapping layer collaborates with a domain classifier to learn both domain mapping capabilities and the ability to assess domain adaptation difficulty. Finally, this approach is applied during the testing phase, rapidly adapting to domain variations through meta-training tasks on support sets, consequently enhancing the model's capability to transfer domain knowledge effectively. Experimental validation conducted across six datasets from diverse domains demonstrates the effectiveness of the proposed method.
Related papers
- Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition [1.2878987353423252]
Unsupervised domain adaptation (UDA) has become increasingly prevalent in scene text recognition (STR)
We introduce the Stratified Domain Adaptation (StrDA) approach, which examines the gradual escalation of the domain gap for the learning process.
We propose a novel method for employing domain discriminators to estimate the out-of-distribution and domain discriminative levels of data samples.
arXiv Detail & Related papers (2024-10-13T16:40:48Z) - Understanding the Cross-Domain Capabilities of Video-Based Few-Shot Action Recognition Models [3.072340427031969]
Few-shot action recognition (FSAR) aims to learn a model capable of identifying novel actions in videos using only a few examples.
In assuming the base dataset seen during meta-training and novel dataset used for evaluation can come from different domains, cross-domain few-shot learning alleviates data collection and annotation costs.
We systematically evaluate existing state-of-the-art single-domain, transfer-based, and cross-domain FSAR methods on new cross-domain tasks.
arXiv Detail & Related papers (2024-06-03T07:48:18Z) - A Recent Survey of Heterogeneous Transfer Learning [15.830786437956144]
heterogeneous transfer learning has become a vital strategy in various tasks.
We offer an extensive review of over 60 HTL methods, covering both data-based and model-based approaches.
We explore applications in natural language processing, computer vision, multimodal learning, and biomedicine.
arXiv Detail & Related papers (2023-10-12T16:19:58Z) - NormAUG: Normalization-guided Augmentation for Domain Generalization [60.159546669021346]
We propose a simple yet effective method called NormAUG (Normalization-guided Augmentation) for deep learning.
Our method introduces diverse information at the feature level and improves the generalization of the main path.
In the test stage, we leverage an ensemble strategy to combine the predictions from the auxiliary path of our model, further boosting performance.
arXiv Detail & Related papers (2023-07-25T13:35:45Z) - A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
The research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years.
We provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme.
We compare the results of more than 30 representative SFDA methods on three popular classification benchmarks.
arXiv Detail & Related papers (2023-02-23T06:32:09Z) - Learning with Style: Continual Semantic Segmentation Across Tasks and
Domains [25.137859989323537]
Domain adaptation and class incremental learning deal with domain and task variability separately, whereas their unified solution is still an open problem.
We tackle both facets of the problem together, taking into account the semantic shift within both input and label spaces.
We show how the proposed method outperforms existing approaches, which prove to be ill-equipped to deal with continual semantic segmentation under both task and domain shift.
arXiv Detail & Related papers (2022-10-13T13:24:34Z) - Label Distribution Learning for Generalizable Multi-source Person
Re-identification [48.77206888171507]
Person re-identification (Re-ID) is a critical technique in the video surveillance system.
It is difficult to directly apply the supervised model to arbitrary unseen domains.
We propose a novel label distribution learning (LDL) method to address the generalizable multi-source person Re-ID task.
arXiv Detail & Related papers (2022-04-12T15:59:10Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
Multi-source unsupervised domain adaptation (MSDA) aims at learning a predictor for an unlabeled domain by assigning weak knowledge from a bag of source models.
We propose to embed Multi-Source version of DomaIn Alignment Layers (MS-DIAL) at different levels of the predictor.
Our approach can improve state-of-the-art MSDA methods, yielding relative gains of up to +30.64% on their classification accuracies.
arXiv Detail & Related papers (2021-09-06T18:41:19Z) - Cross-domain Imitation from Observations [50.669343548588294]
Imitation learning seeks to circumvent the difficulty in designing proper reward functions for training agents by utilizing expert behavior.
In this paper, we study the problem of how to imitate tasks when there exist discrepancies between the expert and agent MDP.
We present a novel framework to learn correspondences across such domains.
arXiv Detail & Related papers (2021-05-20T21:08:25Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z) - Adaptive Risk Minimization: Learning to Adapt to Domain Shift [109.87561509436016]
A fundamental assumption of most machine learning algorithms is that the training and test data are drawn from the same underlying distribution.
In this work, we consider the problem setting of domain generalization, where the training data are structured into domains and there may be multiple test time shifts.
We introduce the framework of adaptive risk minimization (ARM), in which models are directly optimized for effective adaptation to shift by learning to adapt on the training domains.
arXiv Detail & Related papers (2020-07-06T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.