NormAUG: Normalization-guided Augmentation for Domain Generalization
- URL: http://arxiv.org/abs/2307.13492v2
- Date: Wed, 7 Feb 2024 02:37:04 GMT
- Title: NormAUG: Normalization-guided Augmentation for Domain Generalization
- Authors: Lei Qi, Hongpeng Yang, Yinghuan Shi, Xin Geng
- Abstract summary: We propose a simple yet effective method called NormAUG (Normalization-guided Augmentation) for deep learning.
Our method introduces diverse information at the feature level and improves the generalization of the main path.
In the test stage, we leverage an ensemble strategy to combine the predictions from the auxiliary path of our model, further boosting performance.
- Score: 60.159546669021346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has made significant advancements in supervised learning.
However, models trained in this setting often face challenges due to domain
shift between training and test sets, resulting in a significant drop in
performance during testing. To address this issue, several domain
generalization methods have been developed to learn robust and domain-invariant
features from multiple training domains that can generalize well to unseen test
domains. Data augmentation plays a crucial role in achieving this goal by
enhancing the diversity of the training data. In this paper, inspired by the
observation that normalizing an image with different statistics generated by
different batches with various domains can perturb its feature, we propose a
simple yet effective method called NormAUG (Normalization-guided Augmentation).
Our method includes two paths: the main path and the auxiliary (augmented)
path. During training, the auxiliary path includes multiple sub-paths, each
corresponding to batch normalization for a single domain or a random
combination of multiple domains. This introduces diverse information at the
feature level and improves the generalization of the main path. Moreover, our
NormAUG method effectively reduces the existing upper boundary for
generalization based on theoretical perspectives. During the test stage, we
leverage an ensemble strategy to combine the predictions from the auxiliary
path of our model, further boosting performance. Extensive experiments are
conducted on multiple benchmark datasets to validate the effectiveness of our
proposed method.
Related papers
- Advancing Open-Set Domain Generalization Using Evidential Bi-Level Hardest Domain Scheduler [45.71475375161575]
In Open-Set Domain Generalization, the model is exposed to both new variations of data appearance (domains) and open-set conditions.
We propose the Evidential Bi-Level Hardest Domain Scheduler (EBiL-HaDS) to achieve an adaptive domain scheduler.
arXiv Detail & Related papers (2024-09-26T05:57:35Z) - Enhancing Domain Adaptation through Prompt Gradient Alignment [16.618313165111793]
We develop a line of works based on prompt learning to learn both domain-invariant and specific features.
We cast UDA as a multiple-objective optimization problem in which each objective is represented by a domain loss.
Our method consistently surpasses other prompt-based baselines by a large margin on different UDA benchmarks.
arXiv Detail & Related papers (2024-06-13T17:40:15Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
Single domain generalization aims to enhance the ability of the model to generalize to unknown domains when trained on a single source domain.
The limited diversity in the training data hampers the learning of domain-invariant features, resulting in compromised generalization performance.
We propose CPerb, a simple yet effective cross-perturbation method to enhance the diversity of the training data.
arXiv Detail & Related papers (2023-08-02T03:16:12Z) - A Novel Mix-normalization Method for Generalizable Multi-source Person
Re-identification [49.548815417844786]
Person re-identification (Re-ID) has achieved great success in the supervised scenario.
It is difficult to directly transfer the supervised model to arbitrary unseen domains due to the model overfitting to the seen source domains.
We propose MixNorm, which consists of domain-aware mix-normalization (DMN) and domain-ware center regularization (DCR)
arXiv Detail & Related papers (2022-01-24T18:09:38Z) - Improving Multi-Domain Generalization through Domain Re-labeling [31.636953426159224]
We study the important link between pre-specified domain labels and the generalization performance.
We introduce a general approach for multi-domain generalization, MulDEns, that uses an ERM-based deep ensembling backbone.
We show that MulDEns does not require tailoring the augmentation strategy or the training process specific to a dataset.
arXiv Detail & Related papers (2021-12-17T23:21:50Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
We argue that both domain-specific and domain-invariant features are crucial for improving the generalization ability of re-id models.
We name two-stream adaptive learning (TAL) to simultaneously model these two kinds of information.
Our framework can be applied to both single-source and multi-source domain generalization tasks.
arXiv Detail & Related papers (2021-11-29T01:27:42Z) - Adaptive Methods for Real-World Domain Generalization [32.030688845421594]
In our work, we investigate whether it is possible to leverage domain information from unseen test samples themselves.
We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model.
Our approach achieves state-of-the-art performance on various domain generalization benchmarks.
arXiv Detail & Related papers (2021-03-29T17:44:35Z) - Model-Based Domain Generalization [96.84818110323518]
We propose a novel approach for the domain generalization problem called Model-Based Domain Generalization.
Our algorithms beat the current state-of-the-art methods on the very-recently-proposed WILDS benchmark by up to 20 percentage points.
arXiv Detail & Related papers (2021-02-23T00:59:02Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
Large-scale labeled training datasets have enabled deep neural networks to excel across a wide range of benchmark vision tasks.
In many applications, it is prohibitively expensive and time-consuming to obtain large quantities of labeled data.
To cope with limited labeled training data, many have attempted to directly apply models trained on a large-scale labeled source domain to another sparsely labeled or unlabeled target domain.
arXiv Detail & Related papers (2020-09-01T00:06:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.