Crafting Query-Aware Selective Attention for Single Image Super-Resolution
- URL: http://arxiv.org/abs/2504.06634v1
- Date: Wed, 09 Apr 2025 07:17:29 GMT
- Title: Crafting Query-Aware Selective Attention for Single Image Super-Resolution
- Authors: Junyoung Kim, Youngrok Kim, Siyeol Jung, Donghyun Min,
- Abstract summary: Single Image Super-Resolution (SISR) reconstructs high-resolution images from low-resolution inputs, enhancing image details.<n>We propose SSCAN, which dynamically selects the most relevant key-value windows based on query similarity.<n>Our experiments demonstrate that SSCAN outperforms existing attention-based SISR methods, achieving up to 0.14 dB PSNR improvement on urban datasets.
- Score: 3.133812520659661
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single Image Super-Resolution (SISR) reconstructs high-resolution images from low-resolution inputs, enhancing image details. While Vision Transformer (ViT)-based models improve SISR by capturing long-range dependencies, they suffer from quadratic computational costs or employ selective attention mechanisms that do not explicitly focus on query-relevant regions. Despite these advancements, prior work has overlooked how selective attention mechanisms should be effectively designed for SISR. We propose SSCAN, which dynamically selects the most relevant key-value windows based on query similarity, ensuring focused feature extraction while maintaining efficiency. In contrast to prior approaches that apply attention globally or heuristically, our method introduces a query-aware window selection strategy that better aligns attention computation with important image regions. By incorporating fixed-sized windows, SSCAN reduces memory usage and enforces linear token-to-token complexity, making it scalable for large images. Our experiments demonstrate that SSCAN outperforms existing attention-based SISR methods, achieving up to 0.14 dB PSNR improvement on urban datasets, guaranteeing both computational efficiency and reconstruction quality in SISR.
Related papers
- Efficient Attention-Sharing Information Distillation Transformer for Lightweight Single Image Super-Resolution [23.265907475054156]
Transformer-based Super-Resolution (SR) methods have demonstrated superior performance compared to convolutional neural network (CNN)-based SR approaches.
We propose a lightweight SR network that integrates attention-sharing and an information distillation structure specifically designed for Transformer-based SR methods.
arXiv Detail & Related papers (2025-01-27T04:46:58Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient Approach [58.57026686186709]
We introduce the Convolutional Transformer layer (ConvFormer) and propose a ConvFormer-based Super-Resolution network (CFSR)
CFSR inherits the advantages of both convolution-based and transformer-based approaches.
Experiments demonstrate that CFSR strikes an optimal balance between computational cost and performance.
arXiv Detail & Related papers (2024-01-11T03:08:00Z) - Swift Parameter-free Attention Network for Efficient Super-Resolution [8.365929625909509]
Single Image Super-Resolution is a crucial task in low-level computer vision.
We propose the Swift.
parameter-free Attention Network (SPAN), which balances parameter count, inference speed, and image quality.
We evaluate SPAN on multiple benchmarks, showing that it outperforms existing efficient super-resolution models in terms of both image quality and inference speed.
arXiv Detail & Related papers (2023-11-21T18:30:40Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - ESTISR: Adapting Efficient Scene Text Image Super-resolution for
Real-Scenes [25.04435367653037]
Scene text image super-resolution (STISR) has yielded remarkable improvements in accurately recognizing scene text.
We propose a novel Efficient Scene Text Image Super-resolution (ESTISR) Network for resource-limited deployment platform.
ESTISR consistently outperforms current methods in terms of actual running time and peak memory consumption.
arXiv Detail & Related papers (2023-06-04T19:14:44Z) - CiaoSR: Continuous Implicit Attention-in-Attention Network for
Arbitrary-Scale Image Super-Resolution [158.2282163651066]
This paper proposes a continuous implicit attention-in-attention network, called CiaoSR.
We explicitly design an implicit attention network to learn the ensemble weights for the nearby local features.
We embed a scale-aware attention in this implicit attention network to exploit additional non-local information.
arXiv Detail & Related papers (2022-12-08T15:57:46Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.