Robust and Noise-resilient Long-Term Prediction of Spatiotemporal Data Using Variational Mode Graph Neural Networks with 3D Attention
- URL: http://arxiv.org/abs/2504.06660v1
- Date: Wed, 09 Apr 2025 07:49:45 GMT
- Title: Robust and Noise-resilient Long-Term Prediction of Spatiotemporal Data Using Variational Mode Graph Neural Networks with 3D Attention
- Authors: Osama Ahmad, Zubair Khalid,
- Abstract summary: This paper focuses on improving the robustness of long-term prediction using aaltemporal variation mode graphal network (VMGCN)<n>The deep learning network for this task relies on historical data inputs, yet real-time data can be corrupted by sensor noise.<n>We model this noise as independent and identically distributed (i.i.d.) Gaussian noise and incorporate it into the LargeST traffic volume dataset.
- Score: 11.356542363919058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on improving the robustness of spatiotemporal long-term prediction using a variational mode graph convolutional network (VMGCN) by introducing 3D channel attention. The deep learning network for this task relies on historical data inputs, yet real-time data can be corrupted by sensor noise, altering its distribution. We model this noise as independent and identically distributed (i.i.d.) Gaussian noise and incorporate it into the LargeST traffic volume dataset, resulting in data with both inherent and additive noise components. Our approach involves decomposing the corrupted signal into modes using variational mode decomposition, followed by feeding the data into a learning pipeline for prediction. We integrate a 3D attention mechanism encompassing spatial, temporal, and channel attention. The spatial and temporal attention modules learn their respective correlations, while the channel attention mechanism is used to suppress noise and highlight the significant modes in the spatiotemporal signals. Additionally, a learnable soft thresholding method is implemented to exclude unimportant modes from the feature vector, and a feature reduction method based on the signal-to-noise ratio (SNR) is applied. We compare the performance of our approach against baseline models, demonstrating that our method achieves superior long-term prediction accuracy, robustness to noise, and improved performance with mode truncation compared to the baseline models. The code of the paper is available at https://github.com/OsamaAhmad369/VMGCN.
Related papers
- A Novel Spatiotemporal Correlation Anomaly Detection Method Based on Time-Frequency-Domain Feature Fusion and a Dynamic Graph Neural Network in Wireless Sensor Network [9.031267813814118]
Attention-based transformers have played an important role in wireless sensor network (WSN) timing anomaly detection due to their ability to capture long-term dependencies.<n>This paper proposes a WSN anomaly detection method that integrates frequency-domain features with dynamic graph neural networks (GNN) under a designed self-encoder reconstruction framework.
arXiv Detail & Related papers (2025-02-25T04:34:18Z) - Towards Scalable and Deep Graph Neural Networks via Noise Masking [59.058558158296265]
Graph Neural Networks (GNNs) have achieved remarkable success in many graph mining tasks.
scaling them to large graphs is challenging due to the high computational and storage costs.
We present random walk with noise masking (RMask), a plug-and-play module compatible with the existing model-simplification works.
arXiv Detail & Related papers (2024-12-19T07:48:14Z) - Variational Mode-Driven Graph Convolutional Network for Spatiotemporal Traffic Forecasting [11.356542363919058]
This paper focuses on interpreting oftemporal (ST) traffic prediction using graph neural networks.
We propose a framework that decomposes ST data into modes using variational mode decomposition (VMD) method, which is then fed into the neural network for forecasting future states.
We evaluate the performance of our proposed network on the LargeST dataset for both short and long-term predictions.
arXiv Detail & Related papers (2024-08-29T01:09:30Z) - Improved Noise Schedule for Diffusion Training [51.849746576387375]
We propose a novel approach to design the noise schedule for enhancing the training of diffusion models.<n>We empirically demonstrate the superiority of our noise schedule over the standard cosine schedule.
arXiv Detail & Related papers (2024-07-03T17:34:55Z) - Impact of Noisy Supervision in Foundation Model Learning [91.56591923244943]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.<n>We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - Enhancing Traffic Prediction with Learnable Filter Module [42.44466196331814]
Noise in traffic data can be challenging to model due to its nature and can lead to overfitting risks.
We propose a learnable filter module to filter out noise in traffic data adaptively.
We demonstrate that the proposed module is lightweight, easy to integrate with existing models, and can significantly improve traffic prediction performance.
arXiv Detail & Related papers (2023-10-24T09:16:13Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - CFNet: Conditional Filter Learning with Dynamic Noise Estimation for
Real Image Denoising [37.29552796977652]
This paper considers real noise approximated by heteroscedastic Gaussian/Poisson Gaussian distributions with in-camera signal processing pipelines.
We propose a novel conditional filter in which the optimal kernels for different feature positions can be adaptively inferred by local features from the image and the noise map.
Also, we bring the thought that alternatively performs noise estimation and non-blind denoising into CNN structure, which continuously updates noise prior to guide the iterative feature denoising.
arXiv Detail & Related papers (2022-11-26T14:28:54Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
In this paper, we combine classical graph signal filtering with deep feature learning into a competitive hybrid design.
We employ interpretable analytical low-pass graph filters and employ 80% fewer network parameters than state-of-the-art DL denoising scheme DnCNN.
arXiv Detail & Related papers (2020-10-21T20:04:22Z) - Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics
and Extract Noise Probability Distributions from Data [4.996878640124385]
SINDy is a framework for the discovery of parsimonious dynamic models and equations from time-series data.
We develop a variant of the SINDy algorithm that integrates automatic differentiation and recent time-stepping constrained by Rudy et al.
We show the method can identify a diversity of probability distributions including Gaussian, uniform, Gamma, and Rayleigh.
arXiv Detail & Related papers (2020-09-12T23:52:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.