Deep Learning for Cardiovascular Risk Assessment: Proxy Features from Carotid Sonography as Predictors of Arterial Damage
- URL: http://arxiv.org/abs/2504.06680v1
- Date: Wed, 09 Apr 2025 08:38:17 GMT
- Title: Deep Learning for Cardiovascular Risk Assessment: Proxy Features from Carotid Sonography as Predictors of Arterial Damage
- Authors: Christoph Balada, Aida Romano-Martinez, Vincent ten Cate, Katharina Geschke, Jonas Tesarz, Paul Claßen, Alexander K. Schuster, Dativa Tibyampansha, Karl-Patrik Kresoja, Philipp S. Wild, Sheraz Ahmed, Andreas Dengel,
- Abstract summary: The VideoMAE deep learning model was adapted by finetuning for application in the domain of ultrasound imaging.<n>The model was trained and tested using a dataset comprising over 31,000 carotid sonography videos sourced from the Gutenberg Health Study.<n>We demonstrate that our machine learning model effectively captures visual features that provide valuable insights into an individual's overall cardiovascular health.
- Score: 34.74294456536736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, hypertension is utilized as an indicator of individual vascular damage. This damage can be identified through machine learning techniques, providing an early risk marker for potential major cardiovascular events and offering valuable insights into the overall arterial condition of individual patients. To this end, the VideoMAE deep learning model, originally developed for video classification, was adapted by finetuning for application in the domain of ultrasound imaging. The model was trained and tested using a dataset comprising over 31,000 carotid sonography videos sourced from the Gutenberg Health Study (15,010 participants), one of the largest prospective population health studies. This adaptation facilitates the classification of individuals as hypertensive or non-hypertensive (75.7% validation accuracy), functioning as a proxy for detecting visual arterial damage. We demonstrate that our machine learning model effectively captures visual features that provide valuable insights into an individual's overall cardiovascular health.
Related papers
- Finetuning and Quantization of EEG-Based Foundational BioSignal Models on ECG and PPG Data for Blood Pressure Estimation [53.2981100111204]
Photoplethysmography and electrocardiography can potentially enable continuous blood pressure (BP) monitoring.<n>Yet accurate and robust machine learning (ML) models remains challenging due to variability in data quality and patient-specific factors.<n>In this work, we investigate whether a model pre-trained on one modality can effectively be exploited to improve the accuracy of a different signal type.<n>Our approach achieves near state-of-the-art accuracy for diastolic BP and surpasses by 1.5x the accuracy of prior works for systolic BP.
arXiv Detail & Related papers (2025-02-10T13:33:12Z) - Sequence-aware Pre-training for Echocardiography Probe Guidance [66.35766658717205]
Cardiac ultrasound faces two major challenges: (1) the inherently complex structure of the heart, and (2) significant individual variations.
Previous works have only learned the population-averaged 2D and 3D structures of the heart rather than personalized cardiac structural features.
We propose a sequence-aware self-supervised pre-training method to learn personalized 2D and 3D cardiac structural features.
arXiv Detail & Related papers (2024-08-27T12:55:54Z) - Machine Learning Models for the Identification of Cardiovascular Diseases Using UK Biobank Data [4.285399998352862]
We used data from the UK Biobank study, which included over 500,000 middle-aged participants from different primary healthcare centers in the UK.
Participants were classified as having CVD if they reported at least one of the following conditions: heart attack, angina, stroke, or high blood pressure.
We used 9 machine learning models (LSVM, RBFSVM, GP, DT, RF, NN, AdaBoost, NB, and QDA) which are explainable and easily interpretable.
arXiv Detail & Related papers (2024-07-23T11:05:20Z) - Fusing Echocardiography Images and Medical Records for Continuous Patient Stratification [16.93115087698284]
We propose a method to learn the representation of a cardiovascular pathology with a difficult-to-characterize continuum, namely hypertension.
Our method first projects each variable into its own representation space using modality-specific approaches.
These standardized representations of multimodal data are then fed to a transformer encoder, which learns to merge them into a comprehensive representation of the patient through the task of predicting a clinical rating.
We observe the major trends along this continuum on a cohort of 239 hypertensive patients, providing unprecedented details in the description of hypertension's impact on various cardiac function descriptors.
arXiv Detail & Related papers (2024-01-15T16:04:46Z) - A Generalizable Deep Learning System for Cardiac MRI [29.429744474335347]
We describe a foundational vision system for cardiac MRI, capable of representing the breadth of human cardiovascular disease and health.
Our deep learning model is trained via self-supervised contrastive learning, by which visual concepts in cine-sequence cardiac MRI scans are learned from the raw text of the accompanying radiology reports.
We show that our deep learning system is capable of not only understanding the staggering complexity of human cardiovascular disease, but can be directed towards clinical problems of interest yielding impressive, clinical grade diagnostic accuracy with a fraction of the training data typically required for such tasks.
arXiv Detail & Related papers (2023-12-01T05:27:29Z) - Echocardiogram Foundation Model -- Application 1: Estimating Ejection
Fraction [2.4164193358532438]
We introduce EchoAI, an echocardiogram foundation model, that is trained using self-supervised learning (SSL) on 1.5 million echocardiograms.
We evaluate our approach by fine-tuning EchoAI to estimate the ejection fraction achieving a mean absolute percentage error of 9.40%.
arXiv Detail & Related papers (2023-11-21T13:00:03Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
We developed a self-supervised contrastive learning approach, EchoCLR, to catered to echocardiogram videos.
When fine-tuned on small portions of labeled data, EchoCLR pretraining significantly improved classification performance for left ventricular hypertrophy (LVH) and aortic stenosis (AS)
EchoCLR is unique in its ability to learn representations of medical videos and demonstrates that SSL can enable label-efficient disease classification from small, labeled datasets.
arXiv Detail & Related papers (2022-07-23T19:17:26Z) - On the Robustness of Pretraining and Self-Supervision for a Deep
Learning-based Analysis of Diabetic Retinopathy [70.71457102672545]
We compare the impact of different training procedures for diabetic retinopathy grading.
We investigate different aspects such as quantitative performance, statistics of the learned feature representations, interpretability and robustness to image distortions.
Our results indicate that models from ImageNet pretraining report a significant increase in performance, generalization and robustness to image distortions.
arXiv Detail & Related papers (2021-06-25T08:32:45Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - A Supervised Learning Approach for Robust Health Monitoring using Face
Videos [32.157163136267954]
Non-contact, device-free human sensing methods can eliminate the need for specialized heart and blood pressure monitoring equipment.
In this paper, we used a non-contact method that only requires face videos recorded using commercially-available webcams.
The proposed approach used facial recognition to detect the face in each frame of the video using facial landmarks.
arXiv Detail & Related papers (2021-01-30T22:03:16Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.