Deep Neural Koopman Operator-based Economic Model Predictive Control of Shipboard Carbon Capture System
- URL: http://arxiv.org/abs/2504.06818v2
- Date: Sat, 12 Apr 2025 12:51:12 GMT
- Title: Deep Neural Koopman Operator-based Economic Model Predictive Control of Shipboard Carbon Capture System
- Authors: Minghao Han, Xunyuan Yin,
- Abstract summary: We propose a data-driven dynamic modeling and economic predictive control approach within the Koopman framework.<n>This integrated modeling and control approach is used to achieve safe and energy-efficient process operation of shipboard post-combustion carbon capture plants.
- Score: 2.087148326341881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shipboard carbon capture is a promising solution to help reduce carbon emissions in international shipping. In this work, we propose a data-driven dynamic modeling and economic predictive control approach within the Koopman framework. This integrated modeling and control approach is used to achieve safe and energy-efficient process operation of shipboard post-combustion carbon capture plants. Specifically, we propose a deep neural Koopman operator modeling approach, based on which a Koopman model with time-varying model parameters is established. This Koopman model predicts the overall economic operational cost and key system outputs, based on accessible partial state measurements. By leveraging this learned model, a constrained economic predictive control scheme is developed. Despite time-varying parameters involved in the formulated model, the formulated optimization problem associated with the economic predictive control design is convex, and it can be solved efficiently during online control implementations. Extensive tests are conducted on a high-fidelity simulation environment for shipboard post-combustion carbon capture processes. Four ship operational conditions are taken into account. The results show that the proposed method significantly improves the overall economic operational performance and carbon capture rate. Additionally, the proposed method guarantees safe operation by ensuring that hard constraints on the system outputs are satisfied.
Related papers
- STONet: A novel neural operator for modeling solute transport in micro-cracked reservoirs [0.49998148477760973]
We develop a novel neural operator, the Solute Transport Operator Network (STONet), to efficiently model contaminant transport in micro-cracked reservoirs.<n>The model combines different networks to encode heterogeneous properties effectively.<n> Numerical experiments demonstrate that our neural operator approach achieves accuracy comparable to that of the finite element method.
arXiv Detail & Related papers (2024-12-07T07:53:47Z) - Efficient Data-Driven MPC for Demand Response of Commercial Buildings [0.0]
We propose a data-driven and mixed-integer bidding strategy for energy management in small commercial buildings.
We consider rooftop unit heating, air conditioning systems with discrete controls to accurately model the operation of most commercial buildings.
We apply our approach in several demand response (DR) settings, including a time-of-use, and a critical rebate bidding.
arXiv Detail & Related papers (2024-01-28T20:01:44Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - COPlanner: Plan to Roll Out Conservatively but to Explore Optimistically
for Model-Based RL [50.385005413810084]
Dyna-style model-based reinforcement learning contains two phases: model rollouts to generate sample for policy learning and real environment exploration.
$textttCOPlanner$ is a planning-driven framework for model-based methods to address the inaccurately learned dynamics model problem.
arXiv Detail & Related papers (2023-10-11T06:10:07Z) - Distributed Robust Learning-Based Backstepping Control Aided with
Neurodynamics for Consensus Formation Tracking of Underwater Vessels [14.660236097277638]
This paper addresses distributed robust learning-based control for consensus formation tracking of multiple underwater vessels.
The system parameters of the marine vessels are assumed to be entirely unknown and subject to the modeling mismatch, oceanic disturbances, and noises.
arXiv Detail & Related papers (2023-08-18T05:45:13Z) - Model-based Causal Bayesian Optimization [74.78486244786083]
We introduce the first algorithm for Causal Bayesian Optimization with Multiplicative Weights (CBO-MW)
We derive regret bounds for CBO-MW that naturally depend on graph-related quantities.
Our experiments include a realistic demonstration of how CBO-MW can be used to learn users' demand patterns in a shared mobility system.
arXiv Detail & Related papers (2023-07-31T13:02:36Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Adaptive Model Predictive Control by Learning Classifiers [26.052368583196426]
We propose an adaptive MPC variant that automatically estimates control and model parameters.
We leverage recent results showing that BO can be formulated as a density ratio estimation.
This is then integrated into a model predictive path integral control framework yielding robust controllers for a variety of challenging robotics tasks.
arXiv Detail & Related papers (2022-03-13T23:22:12Z) - Sample-Efficient Reinforcement Learning via Conservative Model-Based
Actor-Critic [67.00475077281212]
Model-based reinforcement learning algorithms are more sample efficient than their model-free counterparts.
We propose a novel approach that achieves high sample efficiency without the strong reliance on accurate learned models.
We show that CMBAC significantly outperforms state-of-the-art approaches in terms of sample efficiency on several challenging tasks.
arXiv Detail & Related papers (2021-12-16T15:33:11Z) - A Reinforcement Learning-based Economic Model Predictive Control
Framework for Autonomous Operation of Chemical Reactors [0.5735035463793008]
This work presents a novel framework for integrating EMPC and RL for online model parameter estimation of a class of nonlinear systems.
The major advantage of this framework is its simplicity; state-of-the-art RL algorithms and EMPC schemes can be employed with minimal modifications.
arXiv Detail & Related papers (2021-05-06T13:34:30Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.