Integrating Cognitive Processing Signals into Language Models: A Review of Advances, Applications and Future Directions
- URL: http://arxiv.org/abs/2504.06843v1
- Date: Wed, 09 Apr 2025 13:01:48 GMT
- Title: Integrating Cognitive Processing Signals into Language Models: A Review of Advances, Applications and Future Directions
- Authors: Angela Lopez-Cardona, Sebastian Idesis, Ioannis Arapakis,
- Abstract summary: This article provides an overview of recent advancements in leveraging cognitive signals, particularly Eye-tracking (ET) signals, to enhance Language Models (LMs) and Multimodal Large Language Models (MLLMs)<n>By incorporating user-centric cognitive signals, these approaches address key challenges, including data scarcity and the environmental costs of training large-scale models.<n>The review emphasises the potential of ET data in tasks like Visual Question Answering (VQA) and mitigating hallucinations in MLLMs, and concludes by discussing emerging challenges and research trends.
- Score: 2.362288417229025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the integration of cognitive neuroscience in Natural Language Processing (NLP) has gained significant attention. This article provides a critical and timely overview of recent advancements in leveraging cognitive signals, particularly Eye-tracking (ET) signals, to enhance Language Models (LMs) and Multimodal Large Language Models (MLLMs). By incorporating user-centric cognitive signals, these approaches address key challenges, including data scarcity and the environmental costs of training large-scale models. Cognitive signals enable efficient data augmentation, faster convergence, and improved human alignment. The review emphasises the potential of ET data in tasks like Visual Question Answering (VQA) and mitigating hallucinations in MLLMs, and concludes by discussing emerging challenges and research trends.
Related papers
- Causality for Large Language Models [37.10970529459278]
Large language models (LLMs) with billions or trillions of parameters are trained on vast datasets, achieving unprecedented success across a series of language tasks.
Recent research highlights that LLMs function as causal parrots, capable of reciting causal knowledge without truly understanding or applying it.
This survey aims to explore how causality can enhance LLMs at every stage of their lifecycle.
arXiv Detail & Related papers (2024-10-20T07:22:23Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - TE-SSL: Time and Event-aware Self Supervised Learning for Alzheimer's Disease Progression Analysis [6.6584447062231895]
Alzheimer's Dementia (AD) represents one of the most pressing challenges in the field of neurodegenerative disorders.
Recent advancements in deep learning and various representation learning strategies, including self-supervised learning (SSL), have shown significant promise in enhancing medical image analysis.
We propose a novel framework, Time and Even-aware SSL (TE-SSL), which integrates time-to-event and event data as supervisory signals to refine the learning process.
arXiv Detail & Related papers (2024-07-09T13:41:32Z) - Federated Learning driven Large Language Models for Swarm Intelligence: A Survey [2.769238399659845]
Federated learning (FL) offers a compelling framework for training large language models (LLMs)
We focus on machine unlearning, a crucial aspect for complying with privacy regulations like the Right to be Forgotten.
We explore various strategies that enable effective unlearning, such as perturbation techniques, model decomposition, and incremental learning.
arXiv Detail & Related papers (2024-06-14T08:40:58Z) - Augmenting LLMs with Knowledge: A survey on hallucination prevention [0.0]
This survey delves into the realm of language models (LMs) augmented with the ability to tap into external knowledge sources.
While adhering to the standard objective of predicting missing tokens, these augmented LMs leverage diverse, possibly non-parametric external modules.
arXiv Detail & Related papers (2023-09-28T14:09:58Z) - Large Language Models for Information Retrieval: A Survey [58.30439850203101]
Information retrieval has evolved from term-based methods to its integration with advanced neural models.
Recent research has sought to leverage large language models (LLMs) to improve IR systems.
We delve into the confluence of LLMs and IR systems, including crucial aspects such as query rewriters, retrievers, rerankers, and readers.
arXiv Detail & Related papers (2023-08-14T12:47:22Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.