Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
- URL: http://arxiv.org/abs/2504.06868v3
- Date: Mon, 28 Apr 2025 07:35:12 GMT
- Title: Persona Dynamics: Unveiling the Impact of Personality Traits on Agents in Text-Based Games
- Authors: Seungwon Lim, Seungbeen Lee, Dongjun Min, Youngjae Yu,
- Abstract summary: We introduce PANDA: Personality Adapted Neural Decision Agents, a novel method for projecting human personality traits onto agents.<n>We deploy 16 distinct personality types across 25 text-based games and analyze their trajectories.<n>These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
- Score: 14.443840118369176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial agents are increasingly central to complex interactions and decision-making tasks, yet aligning their behaviors with desired human values remains an open challenge. In this work, we investigate how human-like personality traits influence agent behavior and performance within text-based interactive environments. We introduce PANDA: Personality Adapted Neural Decision Agents, a novel method for projecting human personality traits onto agents to guide their behavior. To induce personality in a text-based game agent, (i) we train a personality classifier to identify what personality type the agent's actions exhibit, and (ii) we integrate the personality profiles directly into the agent's policy-learning pipeline. By deploying agents embodying 16 distinct personality types across 25 text-based games and analyzing their trajectories, we demonstrate that an agent's action decisions can be guided toward specific personality profiles. Moreover, certain personality types, such as those characterized by higher levels of Openness, display marked advantages in performance. These findings underscore the promise of personality-adapted agents for fostering more aligned, effective, and human-centric decision-making in interactive environments.
Related papers
- PsyPlay: Personality-Infused Role-Playing Conversational Agents [44.621060656111084]
PsyPlay is a dialogue generation framework that facilitates the expression of rich personalities.<n>We show that PsyPlay can accurately portray the intended personality traits, achieving an overall success rate of 80.31% on GPT-3.5.<n>We construct a dialogue corpus for personality-infused role-playing, called PsyPlay-Bench.
arXiv Detail & Related papers (2025-02-06T07:17:12Z) - Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts.
We propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait.
arXiv Detail & Related papers (2024-09-29T14:41:43Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, integrating psychology-grounded principles of personality: social practice, consistency, and dynamic development.
We incorporate personality traits directly into the model parameters, enhancing the model's resistance to induction, promoting consistency, and supporting the dynamic evolution of personality.
arXiv Detail & Related papers (2024-07-17T08:13:22Z) - The Effects of Embodiment and Personality Expression on Learning in LLM-based Educational Agents [0.7499722271664147]
This work investigates how personality expression and embodiment affect personality perception and learning in educational conversational agents.
We extend an existing personality-driven conversational agent framework by integrating LLM-based conversation support tailored to an educational application.
For each personality style, we assess three models: (1) a dialogue-only model that conveys personality through dialogue, (2) an animated human model that expresses personality solely through dialogue, and (3) an animated human model that expresses personality through both dialogue and body and facial animations.
arXiv Detail & Related papers (2024-06-24T09:38:26Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
We propose a new task, Personality-affected Emotion Generation, to generate emotion based on the personality given to the dialog system.
We analyze the challenges in this task, i.e., (1) heterogeneously integrating personality and emotional factors and (2) extracting multi-granularity emotional information in the dialog context.
Results suggest that by adopting our method, the emotion generation performance is improved by 13% in macro-F1 and 5% in weighted-F1 from the BERT-base model.
arXiv Detail & Related papers (2024-04-03T08:48:50Z) - Knowledge Boundary and Persona Dynamic Shape A Better Social Media Agent [69.12885360755408]
We construct a social media agent based on personalized knowledge and dynamic persona information.
For personalized knowledge, we add external knowledge sources and match them with the persona information of agents, thereby giving the agent personalized world knowledge.
For dynamic persona information, we use current action information to internally retrieve the persona information of the agent, thereby reducing the interference of diverse persona information on the current action.
arXiv Detail & Related papers (2024-03-28T10:01:23Z) - Can ChatGPT Read Who You Are? [10.577227353680994]
We report the results of a comprehensive user study featuring texts written in Czech by a representative population sample of 155 participants.
We compare the personality trait estimations made by ChatGPT against those by human raters and report ChatGPT's competitive performance in inferring personality traits from text.
arXiv Detail & Related papers (2023-12-26T14:43:04Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - InCharacter: Evaluating Personality Fidelity in Role-Playing Agents through Psychological Interviews [57.04431594769461]
This paper introduces a novel perspective to evaluate the personality fidelity of RPAs with psychological scales.
Experiments include various types of RPAs and LLMs, covering 32 distinct characters on 14 widely used psychological scales.
With InCharacter, we show that state-of-the-art RPAs exhibit personalities highly aligned with the human-perceived personalities of the characters, achieving an accuracy up to 80.7%.
arXiv Detail & Related papers (2023-10-27T08:42:18Z) - Affective Conversational Agents: Understanding Expectations and Personal
Influences [17.059654991560105]
We surveyed 745 respondents to understand the expectations and preferences regarding affective skills in various applications.
Our results indicate a preference for scenarios that involve human interaction, emotional support, and creative tasks.
Overall, the desired affective skills in AI agents depend largely on the application's context and nature.
arXiv Detail & Related papers (2023-10-19T04:33:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.