An improved quantum algorithm for linear autonomous differential equations via Padé approximation
- URL: http://arxiv.org/abs/2504.06948v2
- Date: Tue, 22 Apr 2025 03:24:32 GMT
- Title: An improved quantum algorithm for linear autonomous differential equations via Padé approximation
- Authors: Dekuan Dong, Yingzhou Li, Jungong Xue,
- Abstract summary: The discretized solution can be represented by a product of matrix exponentials.<n>The proposed algorithm approximates the matrix exponential by the diagonal Pad'e approximation.<n>The complexity of the proposed algorithm is analyzed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel quantum algorithm for solving linear autonomous ordinary differential equations (ODEs) using the Pad\'e approximation. For linear autonomous ODEs, the discretized solution can be represented by a product of matrix exponentials. The proposed algorithm approximates the matrix exponential by the diagonal Pad\'e approximation, which is then encoded into a large, block-sparse linear system and solved via quantum linear system algorithms (QLSA). The detailed quantum circuit is given based on quantum oracle access to the matrix, the inhomogeneous term, and the initial state. The complexity of the proposed algorithm is analyzed. Compared to the method based on Taylor approximation, which approximates the matrix exponential using a $k$-th order Taylor series, the proposed algorithm improves the approximation order $k$ from two perspectives: 1) the explicit complexity dependency on $k$ is improved, and 2) a smaller $k$ suffices for the same precision. Numerical experiments demonstrate the advantages of the proposed algorithm comparing to other related algorithms.
Related papers
- A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm [9.804179673817574]
We propose a new quantum algorithm for the quantum linear system problem (QLSP) inspired by the classical proximal point algorithm (PPA)
Our proposed method can be viewed as a meta-algorithm that allows inverting a modified matrix via an existing texttimattQLSP_solver.
By carefully choosing the step size $eta$, the proposed algorithm can effectively precondition the linear system to mitigate the dependence on condition numbers that hindered the applicability of previous approaches.
arXiv Detail & Related papers (2024-06-19T23:15:35Z) - Fast quantum algorithm for differential equations [0.5895819801677125]
We present a quantum algorithm with numerical complexity that is polylogarithmic in $N$ but is independent of $kappa$ for a large class of PDEs.
Our algorithm generates a quantum state that enables extracting features of the solution.
arXiv Detail & Related papers (2023-06-20T18:01:07Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Alternatives to a nonhomogeneous partial differential equation quantum
algorithm [52.77024349608834]
We propose a quantum algorithm for solving nonhomogeneous linear partial differential equations of the form $Apsi(textbfr)=f(textbfr)$.
These achievements enable easier experimental implementation of the quantum algorithm based on nowadays technology.
arXiv Detail & Related papers (2022-05-11T14:29:39Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
Current algorithms are designed using the block coordinate descent method or the proximal point algorithm.
We propose a novel algorithm based on the two-metric projection method, incorporating a carefully designed search direction and variable partitioning scheme.
Experimental results on synthetic and real-world datasets demonstrate that our proposed algorithm provides a significant improvement in computational efficiency compared to the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-03T14:39:10Z) - Quantum homotopy perturbation method for nonlinear dissipative ordinary
differential equations [0.25782420501870296]
We propose a quantum algorithm for solving $n$-dimensional nonlinear dissipative ordinary differential equations (ODEs)
Our algorithm provides exponential improvement over the best classical algorithms or previous quantum algorithms in $n$ or $epsilon$.
arXiv Detail & Related papers (2021-11-15T01:34:43Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z) - High-precision quantum algorithms for partial differential equations [1.4050836886292872]
Quantum computers can produce a quantum encoding of the solution of a system of differential equations exponentially faster than a classical algorithm.
We develop quantum algorithms based on adaptive-order finite difference methods and spectral methods.
Our algorithms apply high-precision quantum linear system algorithms to systems whose condition numbers and approximation errors we bound.
arXiv Detail & Related papers (2020-02-18T20:32:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.