Acquisition of Spatially-Varying Reflectance and Surface Normals via Polarized Reflectance Fields
- URL: http://arxiv.org/abs/2412.09772v1
- Date: Fri, 13 Dec 2024 00:39:55 GMT
- Title: Acquisition of Spatially-Varying Reflectance and Surface Normals via Polarized Reflectance Fields
- Authors: Jing Yang, Pratusha Bhuvana Prasad, Qing Zhang, Yajie Zhao,
- Abstract summary: Accurately measuring the geometry and spatially-varying reflectance of real-world objects is a complex task.
We propose a novel approach using polarized reflectance field capture and a comprehensive statistical analysis algorithm.
We showcase the captured shapes and reflectance of diverse objects with a wide material range, spanning from highly diffuse to highly glossy.
- Score: 15.653977591138682
- License:
- Abstract: Accurately measuring the geometry and spatially-varying reflectance of real-world objects is a complex task due to their intricate shapes formed by concave features, hollow engravings and diverse surfaces, resulting in inter-reflection and occlusion when photographed. Moreover, issues like lens flare and overexposure can arise from interference from secondary reflections and limitations of hardware even in professional studios. In this paper, we propose a novel approach using polarized reflectance field capture and a comprehensive statistical analysis algorithm to obtain highly accurate surface normals (within 0.1mm/px) and spatially-varying reflectance data, including albedo, specular separation, roughness, and anisotropy parameters for realistic rendering and analysis. Our algorithm removes image artifacts via analytical modeling and further employs both an initial step and an optimization step computed on the whole image collection to further enhance the precision of per-pixel surface reflectance and normal measurement. We showcase the captured shapes and reflectance of diverse objects with a wide material range, spanning from highly diffuse to highly glossy - a challenge unaddressed by prior techniques. Our approach enhances downstream applications by offering precise measurements for realistic rendering and provides a valuable training dataset for emerging research in inverse rendering. We will release the polarized reflectance fields of several captured objects with this work.
Related papers
- Normal-NeRF: Ambiguity-Robust Normal Estimation for Highly Reflective Scenes [11.515561389102174]
We introduce a transmittance-gradient-based normal estimation technique that remains robust even under ambiguous shape conditions.
Our proposed method achieves robust reconstruction and high-fidelity rendering of scenes featuring both highly specular reflections and intricate geometric structures.
arXiv Detail & Related papers (2025-01-16T10:42:29Z) - MERLiN: Single-Shot Material Estimation and Relighting for Photometric Stereo [26.032964551717548]
Photometric stereo typically demands intricate data acquisition setups involving multiple light sources to recover surface normals accurately.
We propose MERLiN, an attention-based hourglass network that integrates single image-based inverse rendering and relighting within a single unified framework.
arXiv Detail & Related papers (2024-09-01T09:32:03Z) - NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSP is a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
We derive photometric and geometric cues from the polarimetric image formation model and multiview azimuth consistency.
We achieve the state-of-the-art surface reconstruction results with only 6 views as input.
arXiv Detail & Related papers (2024-06-11T09:53:18Z) - 3D Imaging of Complex Specular Surfaces by Fusing Polarimetric and Deflectometric Information [5.729076985389067]
We introduce a measurement principle that utilizes a novel technique to encode and decode the information contained in a light field reflected off a specular surface.
Our approach removes the unrealistic orthographic imaging assumption for SfP, which significantly improves the respective results.
We showcase our new technique by demonstrating single-shot and multi-shot measurements on complex-shaped specular surfaces.
arXiv Detail & Related papers (2024-06-04T06:24:07Z) - TraM-NeRF: Tracing Mirror and Near-Perfect Specular Reflections through
Neural Radiance Fields [3.061835990893184]
Implicit representations like Neural Radiance Fields (NeRF) showed impressive results for rendering of complex scenes with fine details.
We present a novel reflection tracing method tailored for the involved volume rendering within NeRF.
We derive efficient strategies for importance sampling and the transmittance computation along rays from only few samples.
arXiv Detail & Related papers (2023-10-16T17:59:56Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - Deep Learning Methods for Calibrated Photometric Stereo and Beyond [86.57469194387264]
Photometric stereo recovers the surface normals of an object from multiple images with varying shading cues.
Deep learning methods have shown a powerful ability in the context of photometric stereo against non-Lambertian surfaces.
arXiv Detail & Related papers (2022-12-16T11:27:44Z) - High-Quality RGB-D Reconstruction via Multi-View Uncalibrated
Photometric Stereo and Gradient-SDF [48.29050063823478]
We present a novel multi-view RGB-D based reconstruction method that tackles camera pose, lighting, albedo, and surface normal estimation.
The proposed method formulates the image rendering process using specific physically-based model(s) and optimize the surface's volumetric quantities on the actual surface.
arXiv Detail & Related papers (2022-10-21T19:09:08Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.