論文の概要: Using ML filters to help automated vulnerability repairs: when it helps and when it doesn't
- arxiv url: http://arxiv.org/abs/2504.07027v1
- Date: Wed, 09 Apr 2025 16:39:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-10 13:33:25.750643
- Title: Using ML filters to help automated vulnerability repairs: when it helps and when it doesn't
- Title(参考訳): MLフィルタを使用して自動脆弱性修正を支援する:それが有効でなければ
- Authors: Maria Camporese, Fabio Massacci,
- Abstract要約: テストは通常、アプリケーションを構築するためのコストのかかるプロセスが必要ですが、MLモデルはパッチの迅速な分類に使用できます。
テストに基づいて従来のフィルタの前に置かれる候補パッチの予備フィルタとしてMLモデルを用いることを提案する。
- 参考スコア(独自算出の注目度): 5.10123605644148
- License:
- Abstract: [Context:] The acceptance of candidate patches in automated program repair has been typically based on testing oracles. Testing requires typically a costly process of building the application while ML models can be used to quickly classify patches, thus allowing more candidate patches to be generated in a positive feedback loop. [Problem:] If the model predictions are unreliable (as in vulnerability detection) they can hardly replace the more reliable oracles based on testing. [New Idea:] We propose to use an ML model as a preliminary filter of candidate patches which is put in front of a traditional filter based on testing. [Preliminary Results:] We identify some theoretical bounds on the precision and recall of the ML algorithm that makes such operation meaningful in practice. With these bounds and the results published in the literature, we calculate how fast some of state-of-the art vulnerability detectors must be to be more effective over a traditional AVR pipeline such as APR4Vuln based just on testing.
- Abstract(参考訳): [コンテキスト:] 自動プログラム修復における候補パッチの受け入れは、通常、オーラクルのテストに基づいています。
テストは通常、アプリケーションを構築するためのコストのかかるプロセスが必要ですが、MLモデルはパッチの迅速な分類に使用することができ、より多くの候補パッチをポジティブなフィードバックループで生成することができます。
[Problem:]モデル予測が(脆弱性検出のように)信頼性が低い場合、テストに基づいたより信頼性の高いオラクルを置き換えることはほとんどできません。
[新しいアイデア:]テストに基づいて従来のフィルタの前に置かれる候補パッチの予備フィルタとしてMLモデルを提案する。
[予備結果:]そのような操作を実際に意味のあるものにするMLアルゴリズムの精度とリコールに関する理論的境界を同定する。
これらの境界と文献で発表された結果により、テストのみに基づいてAPR4Vulnのような従来のAVRパイプラインよりも、最先端の脆弱性検出装置のいくつかがより効果的でなければならない速さを計算します。
関連論文リスト
- BanditCAT and AutoIRT: Machine Learning Approaches to Computerized Adaptive Testing and Item Calibration [7.261063083251448]
本稿では,少数の応答を持つ大規模コンピュータ適応テスト(CAT)の校正と管理を行うための完全なフレームワークを提案する。
自動機械学習(AutoML)とアイテム応答理論(IRT)を組み合わせた新しい手法であるAutoIRTを使用している。
我々は、コンテキスト的バンディットフレームワークに問題をキャストし、アイテム応答理論(IRT)を利用する手法であるBanditCATフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-28T13:54:10Z) - STAMP: Outlier-Aware Test-Time Adaptation with Stable Memory Replay [76.06127233986663]
テスト時間適応(TTA)は、トレーニングデータとテストデータの間の分散シフトに、未ラベルのデータのみを用いて対処することを目的としている。
本稿では,サンプル認識とオフリエ拒絶の両方を行う問題に注意を払っている。
本稿では,STAble Memory rePlay (STAMP) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-22T16:25:41Z) - Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-Polygraph [83.90988015005934]
不確実性定量化は機械学習アプリケーションにおいて重要な要素である。
最新のUQベースラインの集合を実装した新しいベンチマークを導入する。
我々は、11タスクにわたるUQと正規化技術に関する大規模な実証的研究を行い、最も効果的なアプローチを特定した。
論文 参考訳(メタデータ) (2024-06-21T20:06:31Z) - Automated Program Repair: Emerging trends pose and expose problems for benchmarks [7.437224586066947]
大規模言語モデル(LLM)はソフトウェアパッチの生成に使用される。
評価と比較は、結果が有効であり、一般化する可能性が高いことを保証するために注意する必要があります。
大規模かつしばしば開示されていないトレーニングデータセットには、評価される問題が含まれている可能性がある。
論文 参考訳(メタデータ) (2024-05-08T23:09:43Z) - Revisiting Unnaturalness for Automated Program Repair in the Era of Large Language Models [9.454475517867817]
本研究では,テンプレートベースの補修技術の効率化を目的としたパッチ自然度測定,エントロピーデルタを提案する。
提案手法は,最先端の機械学習ツールよりも効果的に正パッチをランク付けできる。
論文 参考訳(メタデータ) (2024-04-23T17:12:45Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
テストタイム適応は、トレーニング済みのモデルを、潜在的に分布シフトのある未確認テストサンプルに適応させるのに有効であることが証明されている。
テスト時間フォワード最適化適応法(FOA)を提案する。
FOAは量子化された8ビットのViTで動作し、32ビットのViTで勾配ベースのTENTより優れ、ImageNet-Cで最大24倍のメモリ削減を実現する。
論文 参考訳(メタデータ) (2024-04-02T05:34:33Z) - Patch Space Exploration using Static Analysis Feedback [8.13782364161157]
静的解析を利用して、メモリの安全性問題を自動的に修復する方法を示す。
提案したアプローチは、バグを修正するためのパッチの近さを検査することで、望ましいパッチが何であるかを学習する。
我々は,印字ヒープに対する影響に応じて等価パッチのクラスを作成し,そのクラスのパッチ等価度に対してのみ検証オラクルを呼び出すことにより,修復をスケーラブルにする。
論文 参考訳(メタデータ) (2023-08-01T05:22:10Z) - AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation [64.9230895853942]
ドメインの一般化は、ターゲットのドメイン情報を活用することなく、任意に困難にすることができる。
この問題に対処するためにテスト時適応(TTA)手法が提案されている。
本研究では,テスト時間適応(AdaNPC)を行うためにNon-Parametricを採用する。
論文 参考訳(メタデータ) (2023-04-25T04:23:13Z) - TTAPS: Test-Time Adaption by Aligning Prototypes using Self-Supervision [70.05605071885914]
本研究では,単体テストサンプルに適用可能な自己教師付きトレーニングアルゴリズムSwaVの新たな改良を提案する。
ベンチマークデータセットCIFAR10-Cにおいて,本手法の有効性を示す。
論文 参考訳(メタデータ) (2022-05-18T05:43:06Z) - Exploring Plausible Patches Using Source Code Embeddings in JavaScript [1.3327130030147563]
オープンソースJavaScriptプロジェクトでDoc2Vecモデルをトレーニングし、10のバグに対して465のパッチを生成しました。
これらの正当なパッチと開発者修正は、元のプログラムとの類似性に基づいてランク付けされる。
これらの類似性リストを分析し、プレーンな文書埋め込みが誤分類につながる可能性があることを発見した。
論文 参考訳(メタデータ) (2021-03-31T06:57:10Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。