MDIT: A Model-free Data Interpolation Method for Diverse Instruction Tuning
- URL: http://arxiv.org/abs/2504.07288v2
- Date: Mon, 14 Apr 2025 17:48:08 GMT
- Title: MDIT: A Model-free Data Interpolation Method for Diverse Instruction Tuning
- Authors: Yangning Li, Zihua Lan, Lv Qingsong, Yinghui Li, Hai-Tao Zheng,
- Abstract summary: Large Language Models (LLMs) are increasingly applied across various tasks.<n>We propose MDIT, a novel model-free data method for diverse instruction tuning.<n>Extensive experiments show that our method achieves superior performance in multiple benchmark tasks.
- Score: 20.79390984800288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs) are increasingly applied across various tasks, instruction tuning has emerged as a critical method for enhancing model performance. However, current data management strategies face substantial challenges in generating diverse and comprehensive data, restricting further improvements in model performance. To address this gap, we propose MDIT, a novel model-free data interpolation method for diverse instruction tuning, which generates varied and high-quality instruction data by performing task interpolation. Moreover, it contains diversity-based clustering strategies to ensure the diversity of the training data. Extensive experiments show that our method achieves superior performance in multiple benchmark tasks. The LLMs finetuned with MDIT show significant improvements in numerous tasks such as general question answering, math reasoning, and code generation. MDIT offers an efficient and automatic data synthetic method, generating diverse instruction data without depending on external resources while expanding the application potential of LLMs in complex environments.
Related papers
- HiDe-LLaVA: Hierarchical Decoupling for Continual Instruction Tuning of Multimodal Large Language Model [37.85614317331844]
Instruction tuning is widely used to improve a pre-trained Multimodal Large Language Model (MLLM)<n>It is infeasible to collect all possible instruction datasets simultaneously in real-world scenarios.<n>We propose a task-specific expansion and task-general fusion framework based on the variations in Centered Kernel Alignment (CKA) similarity.
arXiv Detail & Related papers (2025-03-17T08:56:03Z) - Diversity as a Reward: Fine-Tuning LLMs on a Mixture of Domain-Undetermined Data [36.277423093218275]
We study the role of data diversity in enhancing the overall abilities of large language models (LLMs)<n>We propose a new method that gives the LLM a dual identity: an output model to cognitively probe and select data based on diversity reward, as well as an input model to be tuned with the selected data.
arXiv Detail & Related papers (2025-02-05T17:21:01Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
We develop a specialized dataset aimed at enhancing the evaluation and fine-tuning of large language models (LLMs) for wireless communication applications.
The dataset includes a diverse set of multi-hop questions, including true/false and multiple-choice types, spanning varying difficulty levels from easy to hard.
We introduce a Pointwise V-Information (PVI) based fine-tuning method, providing a detailed theoretical analysis and justification for its use in quantifying the information content of training data.
arXiv Detail & Related papers (2025-01-16T16:19:53Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.<n>MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.<n>Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - MetaGPT: Merging Large Language Models Using Model Exclusive Task Arithmetic [6.46176287368784]
We propose textbfModel textbfExclusive textbfTask textbfArithmetic for merging textbfGPT-scale models.
Our proposed MetaGPT is data-agnostic and bypasses the heavy search process, making it cost-effective and easy to implement for LLMs.
arXiv Detail & Related papers (2024-06-17T10:12:45Z) - Mosaic-IT: Free Compositional Data Augmentation Improves Instruction Tuning [30.82220015525281]
Mosaic Instruction Tuning (Mosaic-IT) is a human/model-free compositional data augmentation method.
Mosaic-IT randomly creates rich and diverse augmentations from existing instruction tuning data.
Our evaluations demonstrate a superior performance and training efficiency of Mosaic-IT.
arXiv Detail & Related papers (2024-05-22T04:08:20Z) - UniDM: A Unified Framework for Data Manipulation with Large Language Models [66.61466011795798]
Large Language Models (LLMs) resolve multiple data manipulation tasks.
LLMs exhibit bright benefits in terms of performance but still require customized designs to fit each specific task.
We propose UniDM, a unified framework which establishes a new paradigm to process data manipulation tasks.
arXiv Detail & Related papers (2024-05-10T14:44:04Z) - Towards Robust Instruction Tuning on Multimodal Large Language Models [25.506776502317436]
In this work, we introduce an automatic instruction augmentation method named INSTRAUG in multimodal tasks.
Results on two popular multimodal instructionfollowing benchmarks show that INSTRAUG can significantly improve the alignment of multimodal large language models (MLLMs) across 12 multimodal tasks.
arXiv Detail & Related papers (2024-02-22T12:35:50Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.