Model Discrepancy Learning: Synthetic Faces Detection Based on Multi-Reconstruction
- URL: http://arxiv.org/abs/2504.07382v1
- Date: Thu, 10 Apr 2025 01:54:02 GMT
- Title: Model Discrepancy Learning: Synthetic Faces Detection Based on Multi-Reconstruction
- Authors: Qingchao Jiang, Zhishuo Xu, Zhiying Zhu, Ning Chen, Haoyue Wang, Zhongjie Ba,
- Abstract summary: We explore the intrinsic relationship between synthetic images and their corresponding generation technologies.<n>We find that specific images exhibit significant reconstruction discrepancies across different generative methods.<n>By reversing and reconstructing images using multiple generative models, we analyze the reconstruction differences among real, GAN-generated, and DM-generated images.
- Score: 12.151553109373229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advances in image generation enable hyper-realistic synthetic faces but also pose risks, thus making synthetic face detection crucial. Previous research focuses on the general differences between generated images and real images, often overlooking the discrepancies among various generative techniques. In this paper, we explore the intrinsic relationship between synthetic images and their corresponding generation technologies. We find that specific images exhibit significant reconstruction discrepancies across different generative methods and that matching generation techniques provide more accurate reconstructions. Based on this insight, we propose a Multi-Reconstruction-based detector. By reversing and reconstructing images using multiple generative models, we analyze the reconstruction differences among real, GAN-generated, and DM-generated images to facilitate effective differentiation. Additionally, we introduce the Asian Synthetic Face Dataset (ASFD), containing synthetic Asian faces generated with various GANs and DMs. This dataset complements existing synthetic face datasets. Experimental results demonstrate that our detector achieves exceptional performance, with strong generalization and robustness.
Related papers
- Synthetic Forehead-creases Biometric Generation for Reliable User Verification [6.639785884921617]
We present a new framework to synthesize forehead-crease image data while maintaining important features, such as uniqueness and realism.
We evaluate the diversity and realism of the generated forehead-crease images using the Fr'echet Inception Distance (FID) and the Structural Similarity Index Measure (SSIM)
arXiv Detail & Related papers (2024-08-28T10:33:00Z) - Towards the Detection of AI-Synthesized Human Face Images [12.090322373964124]
This paper presents a benchmark including human face images produced by Generative Adversarial Networks (GANs) and a variety of DMs.
Then, the forgery traces introduced by different generative models have been analyzed in the frequency domain to draw various insights.
The paper further demonstrates that a detector trained with frequency representation can generalize well to other unseen generative models.
arXiv Detail & Related papers (2024-02-13T19:37:44Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
The rapid advancement of photorealistic generators has reached a critical juncture where the discrepancy between authentic and manipulated images is increasingly indistinguishable.
Although there have been a number of publicly available face forgery datasets, the forgery faces are mostly generated using GAN-based synthesis technology.
We propose a large-scale, diverse, and fine-grained high-fidelity dataset, namely GenFace, to facilitate the advancement of deepfake detection.
arXiv Detail & Related papers (2024-02-03T03:13:50Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Detecting High-Quality GAN-Generated Face Images using Neural Networks [23.388645531702597]
We propose a new strategy to differentiate GAN-generated images from authentic images by leveraging spectral band discrepancies.
In particular, we enable the digital preservation of face images using the Cross-band co-occurrence matrix and spatial co-occurrence matrix.
We show that the performance boost is particularly significant and achieves more than 92% in different post-processing environments.
arXiv Detail & Related papers (2022-03-03T13:53:27Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - Identity-Aware CycleGAN for Face Photo-Sketch Synthesis and Recognition [61.87842307164351]
We first propose an Identity-Aware CycleGAN (IACycleGAN) model that applies a new perceptual loss to supervise the image generation network.
It improves CycleGAN on photo-sketch synthesis by paying more attention to the synthesis of key facial regions, such as eyes and nose.
We develop a mutual optimization procedure between the synthesis model and the recognition model, which iteratively synthesizes better images by IACycleGAN.
arXiv Detail & Related papers (2021-03-30T01:30:08Z) - CNN Detection of GAN-Generated Face Images based on Cross-Band
Co-occurrences Analysis [34.41021278275805]
Last-generation GAN models allow to generate synthetic images which are visually indistinguishable from natural ones.
We propose a method for distinguishing GAN-generated from natural images by exploiting inconsistencies among spectral bands.
arXiv Detail & Related papers (2020-07-25T10:55:04Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.