Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression
- URL: http://arxiv.org/abs/2504.07389v1
- Date: Thu, 10 Apr 2025 02:19:03 GMT
- Title: Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression
- Authors: Hanqi Xiao, Yi-Lin Sung, Elias Stengel-Eskin, Mohit Bansal,
- Abstract summary: Post-training quantization (PTQ) reduces a model's memory footprint by mapping full precision weights into low bit weights without costly retraining.<n>We develop a new mixed-precision PTQ approach, Task-Circuit Quantization (TaCQ), that draws parallels to automated circuit discovery.
- Score: 55.323397702682506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Post-training quantization (PTQ) reduces a model's memory footprint by mapping full precision weights into low bit weights without costly retraining, but can degrade its downstream performance especially in low 2- to 3-bit settings. We develop a new mixed-precision PTQ approach, Task-Circuit Quantization (TaCQ), that draws parallels to automated circuit discovery, directly conditioning the quantization process on specific weight circuits -- which we define as sets of weights associated with downstream task performance. These weights are kept as 16-bit weights, while others are quantized, maintaining performance while only adding a marginal memory cost. Specifically, TaCQ contrasts unquantized model weights with a uniformly-quantized model to estimate the expected change in weights due to quantization and uses gradient information to predict the resulting impact on task performance, allowing us to preserve task-specific weights. We compare TaCQ-based quantization to existing mixed-precision quantization methods when conditioning both on general-purpose and task-specific data. Across QA, math reasoning, and text-to-SQL tasks for both Llama-3 and Qwen2.5, we find that TaCQ outperforms baselines using the same calibration data and a lower weight budget, achieving major improvements in the 2 and 3-bit regime. With only 3.1 bits we are able to recover 96% of Llama-3-8B-Instruct's unquantized 16-bit MMLU performance, obtaining a 5.25% absolute improvement over SPQR. We also observe consistently large gains over existing methods in the 2-bit regime, with an average gain of 14.74% over the strongest baseline, SliM-LLM. Moreover, we observe a 7.20% gain without conditioning on specific tasks, showing TaCQ's ability to identify important weights is not limited to task-conditioned settings.
Related papers
- Pushing the Limits of Low-Bit Optimizers: A Focus on EMA Dynamics [65.37942405146232]
We present a novel type of overload that carries with extremely lightweight state elements, achieved through ultra-low-precision quantization.
The proposed SOLO achieves substantial memory savings (approximately 45 GB when training a 7B model) with minimal accuracy loss.
arXiv Detail & Related papers (2025-05-01T06:47:45Z) - RSQ: Learning from Important Tokens Leads to Better Quantized LLMs [65.5558181902098]
Layer-wise quantization is a key technique for efficiently compressing large models without expensive retraining.<n>We propose RSQ (Rotate, Scale, then Quantize), which applies rotations to the model to mitigate outliers.<n>We demonstrate that RSQ consistently outperforms baseline methods across multiple downstream tasks and three model families.
arXiv Detail & Related papers (2025-03-03T18:46:33Z) - PTQ1.61: Push the Real Limit of Extremely Low-Bit Post-Training Quantization Methods for Large Language Models [64.84734437930362]
Large Language Models (LLMs) suffer severe performance degradation when facing extremely low-bit (sub 2-bit) quantization.<n>We propose an extremely low-bit PTQ method called PTQ1.61, which enables weight quantization to 1.61-bit for the first time.<n>Experiments indicate our PTQ1.61 achieves state-of-the-art performance in extremely low-bit quantization.
arXiv Detail & Related papers (2025-02-18T08:04:58Z) - Rethinking Post-Training Quantization: Introducing a Statistical Pre-Calibration Approach [22.25748046511075]
Post-training Quantization (PTQ) techniques rely on calibration processes to maintain their accuracy.
We propose a weight-adaptive PTQ method that can be considered a precursor to calibration-based PTQ methods.
We show that our proposed approach can perform on par with most common calibration-based PTQ methods.
arXiv Detail & Related papers (2025-01-15T19:44:15Z) - SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression [7.6131620435684875]
SLIM is a new one-shot compression framework that holistically integrates hardware-friendly quantization, sparsity, and low-rank approximation.<n>SLIM improves model accuracy by up to 5.66% (LLaMA-2-7B) for 2:4 sparsity with 4-bit weight quantization, outperforming prior methods.<n>We also propose an optional PEFT recipe that further improves accuracy by up to 1.66% (LLaMA-2-13B) compared to SLIM without fine-tuning.
arXiv Detail & Related papers (2024-10-12T18:36:07Z) - L4Q: Parameter Efficient Quantization-Aware Fine-Tuning on Large Language Models [5.304907804008533]
We propose L4Q, a method that integrates Quantization-Aware Training (QAT) with Low-Rank Adaptation (LoRA)<n>By employing a memory-optimized layer design, L4Q significantly reduces QAT's memory overhead, making its training cost comparable to LoRA.<n>Our experiments demonstrate that this combined approach to quantization and fine-tuning achieves superior accuracy.
arXiv Detail & Related papers (2024-02-07T14:35:05Z) - EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models [21.17675493267517]
Post-training quantization (PTQ) and quantization-aware training (QAT) are two main approaches to compress and accelerate diffusion models.
We introduce a data-free and parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed EfficientDM, to achieve QAT-level performance with PTQ-like efficiency.
Our method significantly outperforms previous PTQ-based diffusion models while maintaining similar time and data efficiency.
arXiv Detail & Related papers (2023-10-05T02:51:53Z) - Norm Tweaking: High-performance Low-bit Quantization of Large Language
Models [21.855106896725598]
We introduce a technique called norm tweaking, which can be used as a plugin in current PTQ methods to achieve high precision.
Our method demonstrates significant improvements in both weight-only quantization and joint quantization of weights and activations.
Our simple and effective approach makes it more practical for real-world applications.
arXiv Detail & Related papers (2023-09-06T06:51:15Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
We propose an On-Chip Hardware-Aware Quantization framework, performing hardware-aware mixed-precision quantization on deployed edge devices.
For efficiency metrics, we built an On-Chip Quantization Aware pipeline, which allows the quantization process to perceive the actual hardware efficiency of the quantization operator.
For accuracy metrics, we propose Mask-Guided Quantization Estimation technology to effectively estimate the accuracy impact of operators in the on-chip scenario.
arXiv Detail & Related papers (2023-09-05T04:39:34Z) - A2Q: Accumulator-Aware Quantization with Guaranteed Overflow Avoidance [49.1574468325115]
accumulator-aware quantization (A2Q) is a novel weight quantization method designed to train quantized neural networks (QNNs) to avoid overflow during inference.
A2Q introduces a unique formulation inspired by weight normalization that constrains the L1-norm of model weights according to accumulator bit width bounds.
We show A2Q can train QNNs for low-precision accumulators while maintaining model accuracy competitive with a floating-point baseline.
arXiv Detail & Related papers (2023-08-25T17:28:58Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
We introduce the concept of weight re-mapping for variational quantum circuits (VQCs)
We employ seven distinct weight re-mapping functions to assess their impact on eight classification datasets.
Our results indicate that weight re-mapping can enhance the convergence speed of the VQC.
arXiv Detail & Related papers (2023-06-09T09:42:21Z) - Quantization-Guided Training for Compact TinyML Models [8.266286436571887]
We propose a Quantization Guided Training (QGT) method to guide DNN training towards optimized low-bit-precision targets.
QGT uses customized regularization to encourage weight values towards a distribution that maximizes accuracy while reducing quantization errors.
arXiv Detail & Related papers (2021-03-10T18:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.