Rethinking Post-Training Quantization: Introducing a Statistical Pre-Calibration Approach
- URL: http://arxiv.org/abs/2501.09107v1
- Date: Wed, 15 Jan 2025 19:44:15 GMT
- Title: Rethinking Post-Training Quantization: Introducing a Statistical Pre-Calibration Approach
- Authors: Alireza Ghaffari, Sharareh Younesian, Boxing Chen, Vahid Partovi Nia, Masoud Asgharian,
- Abstract summary: Post-training Quantization (PTQ) techniques rely on calibration processes to maintain their accuracy.
We propose a weight-adaptive PTQ method that can be considered a precursor to calibration-based PTQ methods.
We show that our proposed approach can perform on par with most common calibration-based PTQ methods.
- Score: 22.25748046511075
- License:
- Abstract: As Large Language Models (LLMs) become increasingly computationally complex, developing efficient deployment strategies, such as quantization, becomes crucial. State-of-the-art Post-training Quantization (PTQ) techniques often rely on calibration processes to maintain the accuracy of these models. However, while these calibration techniques can enhance performance in certain domains, they may not be as effective in others. This paper aims to draw attention to robust statistical approaches that can mitigate such issues. We propose a weight-adaptive PTQ method that can be considered a precursor to calibration-based PTQ methods, guiding the quantization process to preserve the distribution of weights by minimizing the Kullback-Leibler divergence between the quantized weights and the originally trained weights. This minimization ensures that the quantized model retains the Shannon information content of the original model to a great extent, guaranteeing robust and efficient deployment across many tasks. As such, our proposed approach can perform on par with most common calibration-based PTQ methods, establishing a new pre-calibration step for further adjusting the quantized weights with calibration. We show that our pre-calibration results achieve the same accuracy as some existing calibration-based PTQ methods on various LLMs.
Related papers
- RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [95.32315448601241]
We propose an algorithm named Rotated Straight-Through-Estimator (RoSTE)
RoSTE combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy to reduce activation outliers.
Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration.
arXiv Detail & Related papers (2025-02-13T06:44:33Z) - MetaAug: Meta-Data Augmentation for Post-Training Quantization [32.02377559968568]
Post-Training Quantization (PTQ) has received significant attention because it requires only a small set of calibration data to quantize a full-precision model.
We propose a novel meta-learning based approach to enhance the performance of post-training quantization.
arXiv Detail & Related papers (2024-07-20T02:18:51Z) - AdpQ: A Zero-shot Calibration Free Adaptive Post Training Quantization Method for LLMs [22.25748046511075]
AdpQ is a novel zero-shot adaptive PTQ method for Large Language Models (LLMs)
It achieves the state-of-the-art performance in low-precision quantization without requiring any calibration data.
Our results achieve the same accuracy as the existing methods on various LLM benchmarks while the quantization time is reduced by at least 10x.
arXiv Detail & Related papers (2024-05-22T05:32:11Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
Large Language Models (LLMs) face significant deployment challenges due to their substantial memory requirements and the computational demands of auto-regressive text generation process.
This paper addresses these challenges by focusing on the quantization of LLMs, a technique that reduces memory consumption by converting model parameters and activations into low-bit integers.
arXiv Detail & Related papers (2024-02-19T11:33:21Z) - Norm Tweaking: High-performance Low-bit Quantization of Large Language
Models [21.855106896725598]
We introduce a technique called norm tweaking, which can be used as a plugin in current PTQ methods to achieve high precision.
Our method demonstrates significant improvements in both weight-only quantization and joint quantization of weights and activations.
Our simple and effective approach makes it more practical for real-world applications.
arXiv Detail & Related papers (2023-09-06T06:51:15Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
We propose a novel quantize before fine-tuning'' framework, PreQuant.
PreQuant is compatible with various quantization strategies, with outlier-aware fine-tuning incorporated to correct the induced quantization error.
We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5.
arXiv Detail & Related papers (2023-05-30T08:41:33Z) - Benchmarking the Reliability of Post-training Quantization: a Particular
Focus on Worst-case Performance [53.45700148820669]
Post-training quantization (PTQ) is a popular method for compressing deep neural networks (DNNs) without modifying their original architecture or training procedures.
Despite its effectiveness and convenience, the reliability of PTQ methods in the presence of some extrem cases such as distribution shift and data noise remains largely unexplored.
This paper first investigates this problem on various commonly-used PTQ methods.
arXiv Detail & Related papers (2023-03-23T02:55:50Z) - ZeroQuant-V2: Exploring Post-training Quantization in LLMs from
Comprehensive Study to Low Rank Compensation [24.34969722921442]
Post-training quantization (PTQ) has emerged as a promising technique for mitigating memory consumption and computational costs in large language models (LLMs)
We conduct a comprehensive analysis of these factors by investigating the effects of PTQ on weight-only, activation-only, and weight-and-activation quantization.
We propose an optimized method called Low-Rank Compensation (LoRC) to enhance model quality recovery with a minimal increase in model size.
arXiv Detail & Related papers (2023-03-15T01:27:15Z) - Sharp Calibrated Gaussian Processes [58.94710279601622]
State-of-the-art approaches for designing calibrated models rely on inflating the Gaussian process posterior variance.
We present a calibration approach that generates predictive quantiles using a computation inspired by the vanilla Gaussian process posterior variance.
Our approach is shown to yield a calibrated model under reasonable assumptions.
arXiv Detail & Related papers (2023-02-23T12:17:36Z) - Gradient $\ell_1$ Regularization for Quantization Robustness [70.39776106458858]
We derive a simple regularization scheme that improves robustness against post-training quantization.
By training quantization-ready networks, our approach enables storing a single set of weights that can be quantized on-demand to different bit-widths.
arXiv Detail & Related papers (2020-02-18T12:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.