論文の概要: Multi-Modal Data Fusion for Moisture Content Prediction in Apple Drying
- arxiv url: http://arxiv.org/abs/2504.07465v1
- Date: Thu, 10 Apr 2025 05:29:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:19:57.691311
- Title: Multi-Modal Data Fusion for Moisture Content Prediction in Apple Drying
- Title(参考訳): アップルの乾燥における水分量予測のためのマルチモーダルデータ融合
- Authors: Shichen Li, Chenhui Shao,
- Abstract要約: 乾燥工程の品質管理には,最終水分量(MC)の正確な予測が不可欠である。
本稿では,2つのデータモダリティを効果的に融合する,新しいマルチモーダルデータ融合フレームワークを提案する。
実験により,マルチモーダル手法は最先端手法と比較して予測精度を大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 0.11510009152620666
- License:
- Abstract: Fruit drying is widely used in food manufacturing to reduce product moisture, ensure product safety, and extend product shelf life. Accurately predicting final moisture content (MC) is critically needed for quality control of drying processes. State-of-the-art methods can build deterministic relationships between process parameters and MC, but cannot adequately account for inherent process variabilities that are ubiquitous in fruit drying. To address this gap, this paper presents a novel multi-modal data fusion framework to effectively fuse two modalities of data: tabular data (process parameters) and high-dimensional image data (images of dried apple slices) to enable accurate MC prediction. The proposed modeling architecture permits flexible adjustment of information portion from tabular and image data modalities. Experimental validation shows that the multi-modal approach improves predictive accuracy substantially compared to state-of-the-art methods. The proposed method reduces root-mean-squared errors by 19.3%, 24.2%, and 15.2% over tabular-only, image-only, and standard tabular-image fusion models, respectively. Furthermore, it is demonstrated that our method is robust in varied tabular-image ratios and capable of effectively capturing inherent small-scale process variabilities. The proposed framework is extensible to a variety of other drying technologies.
- Abstract(参考訳): 果物の乾燥は食品製造において、製品の水分を減らし、製品の安全性を確保し、製品の棚の寿命を延ばすために広く使われている。
乾燥工程の品質管理には,最終水分量(MC)の正確な予測が不可欠である。
最先端の手法は、プロセスパラメータとMC間の決定論的関係を構築することができるが、フルーツ乾燥においてユビキタスなプロセスの変動を適切に考慮することはできない。
このギャップに対処するため,本論文では,表層データ(プロセスパラメータ)と高次元画像データ(乾燥リンゴスライスの画像)の2つのモードを効果的に融合し,正確なMC予測を可能にする,新しいマルチモーダルデータ融合フレームワークを提案する。
提案したモデリングアーキテクチャは,表や画像のデータモダリティから情報部分の柔軟な調整を可能にする。
実験により,マルチモーダル手法は最先端手法と比較して予測精度を大幅に向上することが示された。
提案手法は, 最大2乗誤差をそれぞれ19.3%, 24.2%, 15.2%削減する。
さらに,本手法は多彩な表像比で頑健であり,小規模プロセスの変動を効果的に把握できることが実証された。
提案するフレームワークは他の様々な乾燥技術にも拡張可能である。
関連論文リスト
- Generative Dataset Distillation Based on Self-knowledge Distillation [49.20086587208214]
本稿では,予測ロジットの整列精度を向上させる新しい生成データセット蒸留法を提案する。
本手法は, 合成データと原データとのより正確な分布マッチングを実現するために, 自己知識蒸留を統合したものである。
提案手法は, 既存の最先端手法より優れており, 蒸留性能が良好である。
論文 参考訳(メタデータ) (2025-01-08T00:43:31Z) - Efficient Dataset Distillation via Diffusion-Driven Patch Selection for Improved Generalization [34.53986517177061]
本稿では, 既存の拡散式蒸留法に対する新しい枠組みを提案し, 生成ではなく拡散モデルを用いて選択する。
提案手法は,入力画像とテキストプロンプトに基づいて拡散モデルから発生するノイズを予測し,各ペアの損失を算出する。
この合理化フレームワークは単一段階の蒸留プロセスを実現するとともに,我々の手法が様々なメトリクスにわたって最先端の手法より優れていることを示す広範な実験を行った。
論文 参考訳(メタデータ) (2024-12-13T08:34:46Z) - Consistency Purification: Effective and Efficient Diffusion Purification towards Certified Robustness [28.09748997491938]
本報告では, 従来よりも効率効率の良い優れた浄化器である一貫性浄化について紹介する。
整合性モデルはPF-ODEから抽出した一段階生成モデルであり、単一のネットワーク評価で1次元の純化画像を生成することができる。
総合的な実験により,我々の整合性浄化フレームワークは,ベースライン法と比較して,最先端の信頼性の高いロバスト性と効率性を実現していることが示された。
論文 参考訳(メタデータ) (2024-06-30T08:34:35Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
最小品質の損失を最小限に抑えた1ステップ生成モデルに拡散モデルを蒸留する最大可能性に基づく手法を提案する。
本研究では, 蒸留プロセスの安定化を図るため, 再パラメータ化サンプリング手法とノイズキャンセリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-27T05:55:22Z) - HySim: An Efficient Hybrid Similarity Measure for Patch Matching in Image Inpainting [0.0]
画像領域の不足を埋めるためには、医療画像やリモートセンシングなどの様々な応用において重要な課題である。
本稿では,パッチベースの手法によるモデル駆動手法の改良を提案する。
我々のアプローチは、Hybrid similarity (HySim)を導入することで、標準の2乗差分(SSD)類似度尺度から逸脱する。
論文 参考訳(メタデータ) (2024-03-21T10:59:44Z) - Mitigating Data Consistency Induced Discrepancy in Cascaded Diffusion Models for Sparse-view CT Reconstruction [4.227116189483428]
本研究は, 離散性緩和フレームワークを用いた新規なカスケード拡散について紹介する。
潜在空間の低画質画像生成と画素空間の高画質画像生成を含む。
これは、いくつかの推論ステップをピクセル空間から潜在空間に移すことによって計算コストを最小化する。
論文 参考訳(メタデータ) (2024-03-14T12:58:28Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - dugMatting: Decomposed-Uncertainty-Guided Matting [83.71273621169404]
そこで本稿では, 明確に分解された不確かさを探索し, 効率よく効率よく改善する, 分解不確実性誘導型マッチングアルゴリズムを提案する。
提案したマッチングフレームワークは,シンプルで効率的なラベリングを用いて対話領域を決定する必要性を緩和する。
論文 参考訳(メタデータ) (2023-06-02T11:19:50Z) - Online Non-Destructive Moisture Content Estimation of Filter Media
During Drying Using Artificial Neural Networks [95.42181254494287]
粗いろ過媒体製品の乾燥工程において, 水分量 (MC) の推定が重要である。
人工ニューラルネットワーク(ANN)に基づく手法は、文献で報告されている最先端のMC推定手法と比較する。
実験結果から, ANNとオーブン設定データ, 乾燥時間, 製品温度を組み合わせることで, バルクフィルターメディア製品のMCを確実に推定できることがわかった。
論文 参考訳(メタデータ) (2023-03-27T19:37:53Z) - Structured Pruning Learns Compact and Accurate Models [28.54826400747667]
タスク固有の構造化プルーニング法CoFi(粗粒および細粒のプルーニング)を提案する。
CoFiは高度に並列化可能なワークを提供し、蒸留方法を精度とレイテンシの両方で一致させる。
GLUEおよびSQuADデータセットを用いた実験により、CoFiは10倍以上のスピードアップと小さな精度低下でモデルを生成することが示された。
論文 参考訳(メタデータ) (2022-04-01T13:09:56Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。