論文の概要: Intelligent DoS and DDoS Detection: A Hybrid GRU-NTM Approach to Network Security
- arxiv url: http://arxiv.org/abs/2504.07478v1
- Date: Thu, 10 Apr 2025 06:08:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:21:50.855012
- Title: Intelligent DoS and DDoS Detection: A Hybrid GRU-NTM Approach to Network Security
- Title(参考訳): インテリジェントDoSとDDoS検出:ネットワークセキュリティに対するハイブリッドGRU-NTMアプローチ
- Authors: Caroline Panggabean, Chandrasekar Venkatachalam, Priyanka Shah, Sincy John, Renuka Devi P, Shanmugavalli Venkatachalam,
- Abstract要約: 本研究では,GRU(Gated Recurrent Units)とニューラルチューリングマシン(Neural Turing Machine,NTM)を組み合わせたハイブリッドディープラーニングモデルを提案する。
提案手法は,標準トラフィック,DoSトラフィック,DDoSトラフィックの区別において,99%の精度を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Detecting Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks remains a critical challenge in cybersecurity. This research introduces a hybrid deep learning model combining Gated Recurrent Units (GRUs) and a Neural Turing Machine (NTM) for enhanced intrusion detection. Trained on the UNSW-NB15 and BoT-IoT datasets, the model employs GRU layers for sequential data processing and an NTM for long-term pattern recognition. The proposed approach achieves 99% accuracy in distinguishing between normal, DoS, and DDoS traffic. These findings offer promising advancements in real-time threat detection and contribute to improved network security across various domains.
- Abstract(参考訳): DoS(DoS)とDDoS(Distributed Denial of Service)攻撃の検出は、サイバーセキュリティにおいて重要な課題である。
本研究では,GRU(Gated Recurrent Units)とニューラルチューリングマシン(Neural Turing Machine,NTM)を組み合わせたハイブリッドディープラーニングモデルを提案する。
UNSW-NB15とBoT-IoTデータセットに基づいてトレーニングされたこのモデルは、シーケンシャルデータ処理にGRUレイヤ、長期パターン認識にNTMを使用している。
提案手法は,標準トラフィック,DoSトラフィック,DDoSトラフィックの区別において,99%の精度を実現する。
これらの発見は、リアルタイム脅威検出の有望な進歩をもたらし、様々なドメインにわたるネットワークセキュリティの改善に寄与する。
関連論文リスト
- Investigating Application of Deep Neural Networks in Intrusion Detection System Design [0.0]
研究の目的は、ディープニューラルネットワーク(DNN)のアプリケーションが、悪意のあるネットワーク侵入を正確に検出し、特定できるかどうかを学習することである。
実験結果は,ネットワーク侵入の分類を正確に正確に識別するためのモデルのサポートを示さなかった。
論文 参考訳(メタデータ) (2025-01-27T04:06:30Z) - Achieving Network Resilience through Graph Neural Network-enabled Deep Reinforcement Learning [64.20847540439318]
深層強化学習(DRL)は多くの重要な通信ネットワークのタスクで広く利用されている。
グラフニューラルネットワーク(GNN)とDRLを組み合わせて、GNNを用いてネットワークの非構造的特徴を抽出する研究もある。
本稿では,GNNとDRLを組み合わせたレジリエントネットワークの構築について検討する。
論文 参考訳(メタデータ) (2025-01-19T15:22:17Z) - Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
ネットワーク侵入検知システム(NIDS)のための拡張畳み込みニューラルネットワーク(EnCNN)を提案する。
我々はEnCNNと、ロジスティック回帰、決定木、サポートベクトルマシン(SVM)、ランダムフォレスト、AdaBoost、Votting Ensembleといったアンサンブル手法など、さまざまな機械学習アルゴリズムを比較した。
その結果,EnCNNは検出精度を大幅に向上し,最先端アプローチよりも10%向上した。
論文 参考訳(メタデータ) (2024-09-27T11:20:20Z) - Securing Graph Neural Networks in MLaaS: A Comprehensive Realization of Query-based Integrity Verification [68.86863899919358]
我々は機械学習におけるGNNモデルをモデル中心の攻撃から保護するための画期的なアプローチを導入する。
提案手法は,GNNの完全性に対する包括的検証スキーマを含み,トランスダクティブとインダクティブGNNの両方を考慮している。
本稿では,革新的なノード指紋生成アルゴリズムを組み込んだクエリベースの検証手法を提案する。
論文 参考訳(メタデータ) (2023-12-13T03:17:05Z) - A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks [2.686686221415684]
侵入検知は、セキュリティ専門家の伝統的な慣行であるが、まだ対処すべき問題がいくつかある。
本稿では、未知の攻撃と未知の攻撃の両方を適応的かつ漸進的に検出するハイブリッド侵入検知システム(IDS)のアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-10-26T14:37:54Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - Mixture GAN For Modulation Classification Resiliency Against Adversarial
Attacks [55.92475932732775]
本稿では,GANをベースとした新たな生成逆ネットワーク(Generative Adversarial Network, GAN)を提案する。
GANベースの目的は、DNNベースの分類器に入力する前に、敵の攻撃例を排除することである。
シミュレーションの結果,DNNをベースとしたAMCの精度が約81%に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-29T22:30:32Z) - G-IDS: Generative Adversarial Networks Assisted Intrusion Detection
System [1.5119440099674917]
本稿では,GANによる侵入検知システム(G-IDS)を提案する。
G-IDSは合成サンプルを生成し、IDSは元のサンプルとともにそれらを訓練する。
提案したG-IDSモデルは,スタンドアロンのIDSよりも,トレーニングプロセス中の攻撃検出とモデルの安定化に優れていた。
論文 参考訳(メタデータ) (2020-06-01T02:42:46Z) - Machine Learning based Anomaly Detection for 5G Networks [0.0]
本稿では,SDS(Software Defined Security)を,自動化,柔軟性,スケーラブルなネットワーク防御システムとして提案する。
SDSは機械学習の現在の進歩を活用して、NAS(Neural Architecture Search)を使用してCNN(Convolutional Neural Network)を設計し、異常なネットワークトラフィックを検出する。
論文 参考訳(メタデータ) (2020-03-07T00:17:08Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturbは、ディープニューラルネットワークの対角的堅牢性を改善するために、エンドツーエンドの機能摂動学習アプローチである。
予測最大化にインスパイアされ、ネットワークと雑音パラメータを連続的にトレーニングするために、交互にバックプロパゲーショントレーニングアルゴリズムが導入された。
論文 参考訳(メタデータ) (2020-03-02T18:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。