論文の概要: Intelligent DoS and DDoS Detection: A Hybrid GRU-NTM Approach to Network Security
- arxiv url: http://arxiv.org/abs/2504.07478v1
- Date: Thu, 10 Apr 2025 06:08:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-18 21:09:20.07766
- Title: Intelligent DoS and DDoS Detection: A Hybrid GRU-NTM Approach to Network Security
- Title(参考訳): インテリジェントDoSとDDoS検出:ネットワークセキュリティに対するハイブリッドGRU-NTMアプローチ
- Authors: Caroline Panggabean, Chandrasekar Venkatachalam, Priyanka Shah, Sincy John, Renuka Devi P, Shanmugavalli Venkatachalam,
- Abstract要約: 本研究では,GRU(Gated Recurrent Units)とニューラルチューリングマシン(Neural Turing Machine,NTM)を組み合わせたハイブリッドディープラーニングモデルを提案する。
提案手法は,標準トラフィック,DoSトラフィック,DDoSトラフィックの区別において,99%の精度を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks remains a critical challenge in cybersecurity. This research introduces a hybrid deep learning model combining Gated Recurrent Units (GRUs) and a Neural Turing Machine (NTM) for enhanced intrusion detection. Trained on the UNSW-NB15 and BoT-IoT datasets, the model employs GRU layers for sequential data processing and an NTM for long-term pattern recognition. The proposed approach achieves 99% accuracy in distinguishing between normal, DoS, and DDoS traffic. These findings offer promising advancements in real-time threat detection and contribute to improved network security across various domains.
- Abstract(参考訳): DoS(DoS)とDDoS(Distributed Denial of Service)攻撃の検出は、サイバーセキュリティにおいて重要な課題である。
本研究では,GRU(Gated Recurrent Units)とニューラルチューリングマシン(Neural Turing Machine,NTM)を組み合わせたハイブリッドディープラーニングモデルを提案する。
UNSW-NB15とBoT-IoTデータセットに基づいてトレーニングされたこのモデルは、シーケンシャルデータ処理にGRUレイヤ、長期パターン認識にNTMを使用している。
提案手法は,標準トラフィック,DoSトラフィック,DDoSトラフィックの区別において,99%の精度を実現する。
これらの発見は、リアルタイム脅威検出の有望な進歩をもたらし、様々なドメインにわたるネットワークセキュリティの改善に寄与する。
関連論文リスト
- Intrusion Detection in IoT Networks Using Hyperdimensional Computing: A Case Study on the NSL-KDD Dataset [0.2399911126932527]
IoT(Internet of Things)ネットワークの急速な拡張により,新たなセキュリティ課題が導入された。
本研究では,超次元コンピューティング(HDC)に基づく検出フレームワークを提案し,ネットワーク侵入を識別・分類する。
提案手法は,通常のトラフィックパターンを正確に識別しつつ,DoS,プローブ,R2L,U2Rなどの攻撃カテゴリを効果的に識別する。
論文 参考訳(メタデータ) (2025-03-04T22:33:37Z) - Investigating Application of Deep Neural Networks in Intrusion Detection System Design [0.0]
研究の目的は、ディープニューラルネットワーク(DNN)のアプリケーションが、悪意のあるネットワーク侵入を正確に検出し、特定できるかどうかを学習することである。
実験結果は,ネットワーク侵入の分類を正確に正確に識別するためのモデルのサポートを示さなかった。
論文 参考訳(メタデータ) (2025-01-27T04:06:30Z) - Achieving Network Resilience through Graph Neural Network-enabled Deep Reinforcement Learning [64.20847540439318]
深層強化学習(DRL)は多くの重要な通信ネットワークのタスクで広く利用されている。
グラフニューラルネットワーク(GNN)とDRLを組み合わせて、GNNを用いてネットワークの非構造的特徴を抽出する研究もある。
本稿では,GNNとDRLを組み合わせたレジリエントネットワークの構築について検討する。
論文 参考訳(メタデータ) (2025-01-19T15:22:17Z) - Enhanced Convolution Neural Network with Optimized Pooling and Hyperparameter Tuning for Network Intrusion Detection [0.0]
ネットワーク侵入検知システム(NIDS)のための拡張畳み込みニューラルネットワーク(EnCNN)を提案する。
我々はEnCNNと、ロジスティック回帰、決定木、サポートベクトルマシン(SVM)、ランダムフォレスト、AdaBoost、Votting Ensembleといったアンサンブル手法など、さまざまな機械学習アルゴリズムを比較した。
その結果,EnCNNは検出精度を大幅に向上し,最先端アプローチよりも10%向上した。
論文 参考訳(メタデータ) (2024-09-27T11:20:20Z) - Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
従来の機械学習ベースの侵入検知システム(ML-IDS)にはラベル付きデータの要求のような制限がある。
AutoEncodersやGenerative Adversarial Networks (GAN)のような最近の教師なしML-IDSアプローチは代替ソリューションを提供する。
本稿では,分散データセットの共通表現を学習するフェデレーション型非教師付き異常検出フレームワークであるFedPCAを提案する。
論文 参考訳(メタデータ) (2024-07-10T07:23:21Z) - P3GNN: A Privacy-Preserving Provenance Graph-Based Model for APT Detection in Software Defined Networking [25.181087776375914]
本稿では,グラフ畳み込みネットワーク(GCN)とフェデレーション学習(FL)を相乗化する新しいモデルであるP3GNNを提案する。
P3GNNは教師なし学習を利用して、プロファイランスグラフ内の運用パターンを分析し、セキュリティ違反を示す偏差を識別する。
P3GNNの主なイノベーションは、前兆グラフ内のノードレベルで異常を検出する機能、攻撃軌跡の詳細なビューの提供、セキュリティ解析の強化である。
論文 参考訳(メタデータ) (2024-06-17T18:14:03Z) - Redefining DDoS Attack Detection Using A Dual-Space Prototypical Network-Based Approach [38.38311259444761]
我々は、DDoS攻撃を検出するための新しいディープラーニングベースの技術を導入する。
本稿では,一意な双対空間損失関数を利用する新しい双対空間原型ネットワークを提案する。
このアプローチは、潜在空間における表現学習の強みを生かしている。
論文 参考訳(メタデータ) (2024-06-04T03:22:52Z) - A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks [2.686686221415684]
侵入検知は、セキュリティ専門家の伝統的な慣行であるが、まだ対処すべき問題がいくつかある。
本稿では、未知の攻撃と未知の攻撃の両方を適応的かつ漸進的に検出するハイブリッド侵入検知システム(IDS)のアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-10-26T14:37:54Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
HSI(Deep Learning-based Hyperspectral Image)は、HSI(Hyperspectral Image)とMSI(Multispectral Image)を深層ニューラルネットワーク(DNN)に融合させることにより、高空間分解能HSI(HR-HSI)を生成することを目的としている。
本稿では, HSI-MSI 融合のためのデータ多様性を向上するために, HSI-MSI サンプルペアの自動最適化と拡張を行う新しい逆自動データ拡張フレームワーク ADASR を提案する。
論文 参考訳(メタデータ) (2023-10-11T07:30:37Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
本稿では,流通戦略の再考を通じて協調的深層推論の安全性を目標とするアプローチを提案する。
我々は、この手法を最適化として定式化し、コ推論のレイテンシとプライバシーレベルのデータのトレードオフを確立する。
論文 参考訳(メタデータ) (2022-08-27T14:50:00Z) - TANTRA: Timing-Based Adversarial Network Traffic Reshaping Attack [46.79557381882643]
本稿では,TANTRA(Adversarial Network Traffic Reshaping Attack)を提案する。
我々の回避攻撃は、ターゲットネットワークの良性パケット間の時間差を学習するために訓練された長い短期記憶(LSTM)ディープニューラルネットワーク(DNN)を利用する。
TANTRAは、ネットワーク侵入検出システム回避の平均成功率99.99%を達成します。
論文 参考訳(メタデータ) (2021-03-10T19:03:38Z) - G-IDS: Generative Adversarial Networks Assisted Intrusion Detection
System [1.5119440099674917]
本稿では,GANによる侵入検知システム(G-IDS)を提案する。
G-IDSは合成サンプルを生成し、IDSは元のサンプルとともにそれらを訓練する。
提案したG-IDSモデルは,スタンドアロンのIDSよりも,トレーニングプロセス中の攻撃検出とモデルの安定化に優れていた。
論文 参考訳(メタデータ) (2020-06-01T02:42:46Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturbは、ディープニューラルネットワークの対角的堅牢性を改善するために、エンドツーエンドの機能摂動学習アプローチである。
予測最大化にインスパイアされ、ネットワークと雑音パラメータを連続的にトレーニングするために、交互にバックプロパゲーショントレーニングアルゴリズムが導入された。
論文 参考訳(メタデータ) (2020-03-02T18:27:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。