Using LLMs for Analyzing AIS Data
- URL: http://arxiv.org/abs/2504.07557v2
- Date: Fri, 11 Apr 2025 09:54:57 GMT
- Title: Using LLMs for Analyzing AIS Data
- Authors: Gaspard Merten, Gilles Dejaegere, Mahmoud Sakr,
- Abstract summary: This paper explores the and experiment with different approaches to using Large Language Models (LLMs) for analyzing AIS data.<n>We propose a set of carefully designed queries to assess the reasoning capabilities of LLMs in this kind of tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research in Large Language Models (LLMs), has had a profound impact across various fields, including mobility data science. This paper explores the and experiment with different approaches to using LLMs for analyzing AIS data. We propose a set of carefully designed queries to assess the reasoning capabilities of LLMs in this kind of tasks. Further, we experiment with four different methods: (1) using LLMs as a natural language interface to a spatial database, (2) reasoning on raw data, (3) reasoning on compressed trajectories, and (4) reasoning on semantic trajectories. We investigate the strengths and weaknesses for the four methods, and discuss the findings. The goal is to provide valuable insights for both researchers and practitioners on selecting the most appropriate LLM-based method depending on their specific data analysis objectives.
Related papers
- Latent Factor Models Meets Instructions: Goal-conditioned Latent Factor Discovery without Task Supervision [50.45597801390757]
Instruct-LF is a goal-oriented latent factor discovery system.
It integrates instruction-following ability with statistical models to handle noisy datasets.
arXiv Detail & Related papers (2025-02-21T02:03:08Z) - From Selection to Generation: A Survey of LLM-based Active Learning [153.8110509961261]
Large Language Models (LLMs) have been employed for generating entirely new data instances and providing more cost-effective annotations.<n>This survey aims to serve as an up-to-date resource for researchers and practitioners seeking to gain an intuitive understanding of LLM-based AL techniques.
arXiv Detail & Related papers (2025-02-17T12:58:17Z) - A Comprehensive Analysis on LLM-based Node Classification Algorithms [21.120619437937382]
We develop a comprehensive and testbed for node classification using Large Language Models (LLMs)
It includes ten datasets, eight LLM-based algorithms, and three learning paradigms, and is designed for easy extension with new methods and datasets.
We conduct extensive experiments, training and evaluating over 2,200 models, to determine the key settings that affect performance.
Our findings uncover eight insights, e.g., LLM-based methods can significantly outperform traditional methods in a semi-supervised setting, while the advantage is marginal in a supervised setting.
arXiv Detail & Related papers (2025-02-02T15:56:05Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - 60 Data Points are Sufficient to Fine-Tune LLMs for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.
We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.
Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - Exploring Large Language Models for Feature Selection: A Data-centric Perspective [17.99621520553622]
Large Language Models (LLMs) have influenced various domains, leveraging their exceptional few-shot and zero-shot learning capabilities.
We aim to explore and understand the LLMs-based feature selection methods from a data-centric perspective.
Our findings emphasize the effectiveness and robustness of text-based feature selection methods and showcase their potentials using a real-world medical application.
arXiv Detail & Related papers (2024-08-21T22:35:19Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - LLM-in-the-loop: Leveraging Large Language Model for Thematic Analysis [18.775126929754833]
Thematic analysis (TA) has been widely used for analyzing qualitative data in many disciplines and fields.
Human coders develop and deepen their data interpretation and coding over multiple iterations, making TA labor-intensive and time-consuming.
We propose a human-LLM collaboration framework (i.e., LLM-in-the-loop) to conduct TA with in-context learning (ICL)
arXiv Detail & Related papers (2023-10-23T17:05:59Z) - Large Language Models as Data Preprocessors [9.99065004972981]
Large Language Models (LLMs) have marked a significant advancement in artificial intelligence.
This study explores their potential in data preprocessing, a critical stage in data mining and analytics applications.
We propose an LLM-based framework for data preprocessing, which integrates cutting-edge prompt engineering techniques.
arXiv Detail & Related papers (2023-08-30T23:28:43Z) - Large Language Models for Software Engineering: A Systematic Literature Review [34.12458948051519]
Large Language Models (LLMs) have significantly impacted numerous domains, including Software Engineering (SE)
We select and analyze 395 research papers from January 2017 to January 2024 to answer four key research questions (RQs)
From the answers to these RQs, we discuss the current state-of-the-art and trends, identifying gaps in existing research, and flagging promising areas for future study.
arXiv Detail & Related papers (2023-08-21T10:37:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.