Adaptive extra-gradient methods for min-max optimization and games
- URL: http://arxiv.org/abs/2010.12100v2
- Date: Thu, 19 Nov 2020 13:47:27 GMT
- Title: Adaptive extra-gradient methods for min-max optimization and games
- Authors: Kimon Antonakopoulos and E. Veronica Belmega and Panayotis
Mertikopoulos
- Abstract summary: We present a new family of minmax optimization algorithms that automatically exploit the geometry of the gradient data observed at earlier iterations.
Thanks to this adaptation mechanism, the proposed method automatically detects whether the problem is smooth or not.
It converges to an $varepsilon$-optimal solution within $mathcalO (1/varepsilon)$ iterations in smooth problems, and within $mathcalO (1/varepsilon)$ iterations in non-smooth ones.
- Score: 35.02879452114223
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new family of min-max optimization algorithms that automatically
exploit the geometry of the gradient data observed at earlier iterations to
perform more informative extra-gradient steps in later ones. Thanks to this
adaptation mechanism, the proposed method automatically detects whether the
problem is smooth or not, without requiring any prior tuning by the optimizer.
As a result, the algorithm simultaneously achieves order-optimal convergence
rates, i.e., it converges to an $\varepsilon$-optimal solution within
$\mathcal{O}(1/\varepsilon)$ iterations in smooth problems, and within
$\mathcal{O}(1/\varepsilon^2)$ iterations in non-smooth ones. Importantly,
these guarantees do not require any of the standard boundedness or Lipschitz
continuity conditions that are typically assumed in the literature; in
particular, they apply even to problems with singularities (such as resource
allocation problems and the like). This adaptation is achieved through the use
of a geometric apparatus based on Finsler metrics and a suitably chosen
mirror-prox template that allows us to derive sharp convergence rates for the
methods at hand.
Related papers
- Methods for Convex $(L_0,L_1)$-Smooth Optimization: Clipping, Acceleration, and Adaptivity [50.25258834153574]
We focus on the class of (strongly) convex $(L0)$-smooth functions and derive new convergence guarantees for several existing methods.
In particular, we derive improved convergence rates for Gradient Descent with smoothnessed Gradient Clipping and for Gradient Descent with Polyak Stepsizes.
arXiv Detail & Related papers (2024-09-23T13:11:37Z) - Accelerated Stochastic Min-Max Optimization Based on Bias-corrected Momentum [30.01198677588252]
First-order algorithms require at least $mathcalO(varepsilonepsilon-4)$ complexity to find an $varepsilon-stationary point.
We introduce novel momentum algorithms utilizing efficient variable complexity.
The effectiveness of the method is validated through robust logistic regression using real-world datasets.
arXiv Detail & Related papers (2024-06-18T20:14:52Z) - Adaptive and Optimal Second-order Optimistic Methods for Minimax Optimization [32.939120407900035]
Our algorithms feature a simple update rule that requires solving only one linear system per iteration.
We also evaluate the practical performance of our algorithm by comparing it to existing second-order algorithms for minimax optimization.
arXiv Detail & Related papers (2024-06-04T06:56:41Z) - An Accelerated Gradient Method for Convex Smooth Simple Bilevel Optimization [16.709026203727007]
We present a novel bilevel optimization method that locally approximates the solution set of the lower-level problem.
We measure the performance of our method in terms of suboptimality and infeasibility errors.
arXiv Detail & Related papers (2024-02-12T22:34:53Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Explicit Second-Order Min-Max Optimization Methods with Optimal Convergence Guarantee [86.05440220344755]
We propose and analyze inexact regularized Newton-type methods for finding a global saddle point of emphcon unconstrained min-max optimization problems.
We show that the proposed methods generate iterates that remain within a bounded set and that the iterations converge to an $epsilon$-saddle point within $O(epsilon-2/3)$ in terms of a restricted function.
arXiv Detail & Related papers (2022-10-23T21:24:37Z) - A Projection-free Algorithm for Constrained Stochastic Multi-level
Composition Optimization [12.096252285460814]
We propose a projection-free conditional gradient-type algorithm for composition optimization.
We show that the number of oracles and the linear-minimization oracle required by the proposed algorithm, are of order $mathcalO_T(epsilon-2)$ and $mathcalO_T(epsilon-3)$ respectively.
arXiv Detail & Related papers (2022-02-09T06:05:38Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.