A System for Comprehensive Assessment of RAG Frameworks
- URL: http://arxiv.org/abs/2504.07803v1
- Date: Thu, 10 Apr 2025 14:41:34 GMT
- Title: A System for Comprehensive Assessment of RAG Frameworks
- Authors: Mattia Rengo, Senad Beadini, Domenico Alfano, Roberto Abbruzzese,
- Abstract summary: Retrieval Augmented Generation (RAG) has emerged as a standard paradigm for enhancing the factual accuracy and contextual relevance of Large Language Models (LLMs)<n>Existing evaluation frameworks fail to provide a holistic black-box approach to assessing RAG systems.<n>We introduce SCARF, a modular and flexible evaluation framework designed to benchmark deployed RAG applications systematically.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval Augmented Generation (RAG) has emerged as a standard paradigm for enhancing the factual accuracy and contextual relevance of Large Language Models (LLMs) by integrating retrieval mechanisms. However, existing evaluation frameworks fail to provide a holistic black-box approach to assessing RAG systems, especially in real-world deployment scenarios. To address this gap, we introduce SCARF (System for Comprehensive Assessment of RAG Frameworks), a modular and flexible evaluation framework designed to benchmark deployed RAG applications systematically. SCARF provides an end-to-end, black-box evaluation methodology, enabling a limited-effort comparison across diverse RAG frameworks. Our framework supports multiple deployment configurations and facilitates automated testing across vector databases and LLM serving strategies, producing a detailed performance report. Moreover, SCARF integrates practical considerations such as response coherence, providing a scalable and adaptable solution for researchers and industry professionals evaluating RAG applications. Using the REST APIs interface, we demonstrate how SCARF can be applied to real-world scenarios, showcasing its flexibility in assessing different RAG frameworks and configurations. SCARF is available at GitHub repository.
Related papers
- Can LLMs Be Trusted for Evaluating RAG Systems? A Survey of Methods and Datasets [0.0]
Retrieval-Augmented Generation (RAG) has advanced significantly in recent years.
RAG complexity poses substantial challenges for systematic evaluation and quality enhancement.
This study systematically reviews 63 academic articles to provide a comprehensive overview of state-of-the-art RAG evaluation methodologies.
arXiv Detail & Related papers (2025-04-28T08:22:19Z) - Retrieval Augmented Generation Evaluation in the Era of Large Language Models: A Comprehensive Survey [29.186229489968564]
Retrieval-Augmented Generation (RAG) has revolutionized natural language processing by integrating Large Language Models (LLMs) with external information retrieval.
evaluating RAG systems presents unique challenges due to their hybrid architecture that combines retrieval and generation components.
arXiv Detail & Related papers (2025-04-21T06:39:47Z) - OmniEval: An Omnidirectional and Automatic RAG Evaluation Benchmark in Financial Domain [62.89809156574998]
We introduce an omnidirectional and automatic RAG benchmark, OmniEval, in the financial domain.<n>Our benchmark is characterized by its multi-dimensional evaluation framework.<n>Our experiments demonstrate the comprehensiveness of OmniEval, which includes extensive test datasets.
arXiv Detail & Related papers (2024-12-17T15:38:42Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.<n>We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
We propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules.
RAGChecker has significantly better correlations with human judgments than other evaluation metrics.
The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
arXiv Detail & Related papers (2024-08-15T10:20:54Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [66.93260816493553]
This paper introduces RAGEval, a framework designed to assess RAG systems across diverse scenarios.<n>With a focus on factual accuracy, we propose three novel metrics: Completeness, Hallucination, and Irrelevance.<n> Experimental results show that RAGEval outperforms zero-shot and one-shot methods in terms of clarity, safety, conformity, and richness of generated samples.
arXiv Detail & Related papers (2024-08-02T13:35:11Z) - RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems [0.0]
Retrieval-Augmented Generation (RAG) has become a standard architectural pattern for domain-specific knowledge into user-facing chat applications.<n>We introduce RAGBench: the first comprehensive, large-scale RAG benchmark dataset of 100k examples.<n>We formalize the TRACe evaluation framework: a set of explainable and actionable RAG evaluation metrics applicable across all RAG domains.
arXiv Detail & Related papers (2024-06-25T20:23:15Z) - FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research [70.6584488911715]
retrieval-augmented generation (RAG) has attracted considerable research attention.
Existing RAG toolkits are often heavy and inflexibly, failing to meet the customization needs of researchers.
Our toolkit has implemented 16 advanced RAG methods and gathered and organized 38 benchmark datasets.
arXiv Detail & Related papers (2024-05-22T12:12:40Z) - CRUD-RAG: A Comprehensive Chinese Benchmark for Retrieval-Augmented Generation of Large Language Models [49.16989035566899]
Retrieval-Augmented Generation (RAG) is a technique that enhances the capabilities of large language models (LLMs) by incorporating external knowledge sources.
This paper constructs a large-scale and more comprehensive benchmark, and evaluates all the components of RAG systems in various RAG application scenarios.
arXiv Detail & Related papers (2024-01-30T14:25:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.