論文の概要: Cluster-Driven Expert Pruning for Mixture-of-Experts Large Language Models
- arxiv url: http://arxiv.org/abs/2504.07807v1
- Date: Thu, 10 Apr 2025 14:46:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:21:31.838006
- Title: Cluster-Driven Expert Pruning for Mixture-of-Experts Large Language Models
- Title(参考訳): 大規模言語モデルのクラスタ駆動型エキスパート・プルーニング
- Authors: Hongcheng Guo, Juntao Yao, Boyang Wang, Junjia Du, Shaosheng Cao, Donglin Di, Shun Zhang, Zhoujun Li,
- Abstract要約: クラスタ駆動のExpert Pruning(C-Prune)は、大規模言語モデルの適応的なタスク固有圧縮のための新しい2段階のフレームワークである。
C-Pruneはレイヤワイドの専門家クラスタリングを通じて動作し、各MoE層内で機能的に類似した専門家をグループ化する。
複数のMoEモデルとベンチマークの広範な実験を通じてC-Pruneを検証する。
- 参考スコア(独自算出の注目度): 24.64757529640278
- License:
- Abstract: Mixture-of-Experts (MoE) architectures have emerged as a promising paradigm for scaling large language models (LLMs) with sparse activation of task-specific experts. Despite their computational efficiency during inference, the massive overall parameter footprint of MoE models (e.g., GPT-4) introduces critical challenges for practical deployment. Current pruning approaches often fail to address two inherent characteristics of MoE systems: 1).intra-layer expert homogeneity where experts within the same MoE layer exhibit functional redundancy, and 2). inter-layer similarity patterns where deeper layers tend to contain progressively more homogeneous experts. To tackle these issues, we propose Cluster-driven Expert Pruning (C-Prune), a novel two-stage framework for adaptive task-specific compression of MoE LLMs. C-Prune operates through layer-wise expert clustering, which groups functionally similar experts within each MoE layer using parameter similarity metrics, followed by global cluster pruning, which eliminates redundant clusters across all layers through a unified importance scoring mechanism that accounts for cross-layer homogeneity. We validate C-Prune through extensive experiments on multiple MoE models and benchmarks. The results demonstrate that C-Prune effectively reduces model size while outperforming existing MoE pruning methods.
- Abstract(参考訳): Mixture-of-Experts (MoE)アーキテクチャは、タスク固有の専門家の疎活性化を伴う大規模言語モデル(LLM)をスケールするための有望なパラダイムとして登場した。
推論時の計算効率にもかかわらず、MoEモデルの全体パラメータフットプリント(例:GPT-4)は実用的展開において重要な課題をもたらす。
現在のpruningアプローチは、MoEシステムの2つの特性に対処できないことが多い。
同じMoE層内の専門家が機能的冗長性を示す層内専門家の同質性。
より深い層が徐々に均質な専門家を含む傾向にある層間類似パターン。
これらの問題に対処するため、我々は、MoE LLMの適応的なタスク固有圧縮のための新しい2段階のフレームワークであるCluster-driven Expert Pruning (C-Prune)を提案する。
C-Pruneは、各MoE層内で、パラメータ類似度メトリクスを使用して、機能的に類似した専門家をグループ化するレイヤワイドのエキスパートクラスタリングを通じて運用される。
複数のMoEモデルとベンチマークの広範な実験を通じてC-Pruneを検証する。
その結果、C-Pruneはモデルサイズを効果的に削減し、既存のMoEプルーニング法より優れていることが示された。
関連論文リスト
- MoE-I$^2$: Compressing Mixture of Experts Models through Inter-Expert Pruning and Intra-Expert Low-Rank Decomposition [32.97035551579975]
モデルサイズを小さくし,計算コストを低減させるために,MoEに適した2段階圧縮手法を提案する。
Qwen1.5-MoE-A2.7B、DeepSeek-V2-Lite、Mixtral-8$times$7Bの実験により、提案手法はモデルサイズを低減し、推論効率を向上させることができることを示した。
論文 参考訳(メタデータ) (2024-11-01T20:37:58Z) - Retraining-Free Merging of Sparse MoE via Hierarchical Clustering [14.858134039539697]
本稿では, 疎活性化型エキスパート混合(HC-SMoE)のための階層クラスタリングについて紹介する。
HC-SMoEは、パラメータ還元のためのタスクに依存しないエキスパートマージフレームワークである。
我々は、QwenやMixtralを含む最先端モデルにおけるHC-SMoEの有効性を示すために、複数のゼロショット言語タスクの理論的解析と評価を行う。
論文 参考訳(メタデータ) (2024-10-11T07:36:14Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
SMOE(Sparse Mixture of Expert)モデルは、言語モデリングにおける高密度モデルに代わるスケーラブルな代替品として登場した。
本研究は,SMoEアーキテクチャの設計に関する意思決定を行うために,タスク固有のモデルプルーニングについて検討する。
適応型タスク対応プルーニング手法 UNCURL を導入し,MoE 層当たりの専門家数をオフラインで学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-02T22:35:03Z) - BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts [41.83123857437985]
大規模な体制でゼロからMoEを訓練することは違法に高価である。
本稿では,BAM(Branch-Attend-Mix)を提案する。
5億9000万から20億のパラメータのシードモデルに関する実験では、BAMがパープレキシティとダウンストリームのタスクパフォーマンスの両方でベースラインを超えていることが示されている。
論文 参考訳(メタデータ) (2024-08-15T17:19:12Z) - Diversifying the Expert Knowledge for Task-Agnostic Pruning in Sparse Mixture-of-Experts [75.85448576746373]
本稿では,モデルのパラメータ効率を向上させるために,類似の専門家をグループ化し,グループ化する方法を提案する。
提案手法の有効性を3つの最先端MoEアーキテクチャを用いて検証する。
評価の結果,本手法は自然言語タスクにおいて,他のモデルプルーニング手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-07-12T17:25:02Z) - Multi-Head Mixture-of-Experts [100.60556163597946]
MH-MoE(Multi-Head Mixture-of-Experts)を提案する。
MH-MoEは、他のSMoE最適化手法の実装と分離が容易であり、性能向上のために他のSMoEモデルとの統合が容易である。
論文 参考訳(メタデータ) (2024-04-23T13:47:09Z) - GCC: Generative Calibration Clustering [55.44944397168619]
本稿では,特徴学習と拡張をクラスタリングに組み込む新しいGCC法を提案する。
まず,実検体と実検体間の固有関係を識別する識別的特徴アライメント機構を開発する。
第二に、より信頼性の高いクラスタ割り当てを生成するための自己教師付きメトリック学習を設計する。
論文 参考訳(メタデータ) (2024-04-14T01:51:11Z) - Diversifying the Mixture-of-Experts Representation for Language Models with Orthogonal Optimizer [59.43462055143123]
The Mixture of Experts (MoE)は、ディープラーニングにおいて非常に成功したテクニックとして登場した。
本研究では,MoEの専門家が多様性の専門化や欠如に失敗した同質表現問題に光を当てた。
我々は,各専門家が他の専門家に分散された部分空間への方向を更新するように促す訓練戦略を交互に提案する。
論文 参考訳(メタデータ) (2023-10-15T07:20:28Z) - Efficient and Effective Deep Multi-view Subspace Clustering [9.6753782215283]
E$2$MVSC(Efficient and Effective Deep Multi-View Subspace Clustering)と呼ばれる新しいディープフレームワークを提案する。
パラメータ化されたFC層の代わりに、より計算効率のよいサンプル数からネットワークパラメータスケールを分離するRelation-Metric Netを設計する。
E$2$MVSCは既存のメソッドに匹敵する結果を出し、様々なタイプのマルチビューデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-15T03:08:25Z) - MoEC: Mixture of Expert Clusters [93.63738535295866]
Sparsely Mixture of Experts (MoE)は、安価な計算オーバーヘッドを持つ有望なスケーリング能力のため、大きな関心を集めている。
MoEは密度の高い層をスパースの専門家に変換し、ゲートルーティングネットワークを使用して専門家を条件付きで活性化させる。
しかし、専門家の数が増加するにつれて、乱雑なパラメータを持つMoEはデータアロケーションの過度な調整とスパースに悩まされる。
論文 参考訳(メタデータ) (2022-07-19T06:09:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。