論文の概要: MOSAIC: Modeling Social AI for Content Dissemination and Regulation in Multi-Agent Simulations
- arxiv url: http://arxiv.org/abs/2504.07830v1
- Date: Thu, 10 Apr 2025 15:06:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:22:54.403726
- Title: MOSAIC: Modeling Social AI for Content Dissemination and Regulation in Multi-Agent Simulations
- Title(参考訳): MOSAIC:マルチエージェントシミュレーションにおけるコンテンツ拡散と規制のためのソーシャルAIモデリング
- Authors: Genglin Liu, Salman Rahman, Elisa Kreiss, Marzyeh Ghassemi, Saadia Gabriel,
- Abstract要約: 生成言語エージェントがユーザの行動を予測できる新しいオープンソースのソーシャルネットワークシミュレーションフレームワークMOSAICを提案する。
このシミュレーションは、LCMエージェントと有向なソーシャルグラフを組み合わせることで、創発的偽装行動を分析し、ユーザがオンラインソーシャルコンテンツの正確性をどのように判断するかをよりよく理解する。
- 参考スコア(独自算出の注目度): 17.780541196299954
- License:
- Abstract: We present a novel, open-source social network simulation framework, MOSAIC, where generative language agents predict user behaviors such as liking, sharing, and flagging content. This simulation combines LLM agents with a directed social graph to analyze emergent deception behaviors and gain a better understanding of how users determine the veracity of online social content. By constructing user representations from diverse fine-grained personas, our system enables multi-agent simulations that model content dissemination and engagement dynamics at scale. Within this framework, we evaluate three different content moderation strategies with simulated misinformation dissemination, and we find that they not only mitigate the spread of non-factual content but also increase user engagement. In addition, we analyze the trajectories of popular content in our simulations, and explore whether simulation agents' articulated reasoning for their social interactions truly aligns with their collective engagement patterns. We open-source our simulation software to encourage further research within AI and social sciences.
- Abstract(参考訳): 生成言語エージェントがユーザの行動を予測できる新しいオープンソースのソーシャルネットワークシミュレーションフレームワークMOSAICを提案する。
このシミュレーションは、LCMエージェントと有向なソーシャルグラフを組み合わせることで、創発的偽装行動を分析し、ユーザがオンラインソーシャルコンテンツの正確性をどのように判断するかをよりよく理解する。
多様なパーソナからユーザ表現を構築することにより、コンテンツ拡散とエンゲージメントダイナミクスを大規模にモデル化するマルチエージェントシミュレーションを可能にする。
本枠組みでは,誤情報拡散を模擬した3つのコンテンツモデレーション戦略を評価し,非現実的コンテンツの拡散を緩和するだけでなく,ユーザエンゲージメントの向上も図っている。
さらに,シミュレーションにおける人気コンテンツの軌跡を解析し,シミュレーションエージェントの社会的相互作用に対する明瞭な推論が,集団的エンゲージメントパターンと真に一致しているかを考察した。
シミュレーションソフトウェアをオープンソースとして公開し、AIと社会科学のさらなる研究を奨励しています。
関連論文リスト
- LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
大規模言語モデル(LLM)ベースのAIエージェントは、人間のような知性を達成するために、大きな進歩を遂げた。
LMAgentは,マルチモーダル LLM に基づく大規模かつマルチモーダルなエージェント社会である。
LMAgentでは、友人とチャットする以外に、エージェントは自動で商品を閲覧、購入、レビューしたり、ライブストリーミングのeコマースを行うこともできる。
論文 参考訳(メタデータ) (2024-12-12T12:47:09Z) - From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents [47.935533238820334]
伝統的な社会学研究は、しばしば人間の参加に頼っているが、それは効果的だが、高価であり、スケールが困難であり、倫理的な懸念がある。
大規模言語モデル(LLM)の最近の進歩は、人間の振る舞いをシミュレートし、個々の反応の複製を可能にし、多くの学際的な研究を容易にする可能性を強調している。
シミュレーションは,(1)特定の個人や人口集団を模倣する個人シミュレーション,(2)複数のエージェントが協調して特定の状況における目標を達成するシナリオシミュレーション,(3)エージェント社会内の相互作用をモデル化して実世界のダイナミクスの複雑さや多様性を反映するシミュレーション社会の3種類に分類される。
論文 参考訳(メタデータ) (2024-12-04T18:56:37Z) - OASIS: Open Agent Social Interaction Simulations with One Million Agents [147.00696959981173]
実世界のソーシャルメディアプラットフォームに基づくスケーラブルなソーシャルメディアシミュレータを提案する。
OASISは最大100万人のユーザをモデリングできる大規模なユーザシミュレーションをサポートする。
我々は、情報拡散、グループ分極、XプラットフォームとRedditプラットフォーム間の群れ効果など、様々な社会現象を再現する。
論文 参考訳(メタデータ) (2024-11-18T13:57:35Z) - A Simulation System Towards Solving Societal-Scale Manipulation [14.799498804818333]
AIによる操作の台頭は、社会的信頼と民主的プロセスに重大なリスクをもたらす。
しかし、これらの効果を現実世界で大規模に研究することは倫理的にも論理的にも非現実的です。
この問題に対処するために設計されたシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2024-10-17T03:16:24Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
我々はtextitGenSim と呼ばれる新しい大規模言語モデル (LLM) ベースのシミュレーションプラットフォームを提案する。
我々のプラットフォームは10万のエージェントをサポートし、現実世界のコンテキストで大規模人口をシミュレートする。
我々の知る限り、GenSimは汎用的で大規模で修正可能な社会シミュレーションプラットフォームに向けた最初の一歩である。
論文 参考訳(メタデータ) (2024-10-06T05:02:23Z) - Fusing Dynamics Equation: A Social Opinions Prediction Algorithm with LLM-based Agents [6.1923703280119105]
本稿では,ソーシャルメディア利用者の意見を動的に表現するための革新的なシミュレーション手法を提案する。
FDE-LLMアルゴリズムは意見力学と流行モデルを含む。
ユーザーを意見のリーダーとフォロワーに分類する。
論文 参考訳(メタデータ) (2024-09-13T11:02:28Z) - LLM-Augmented Agent-Based Modelling for Social Simulations: Challenges and Opportunities [0.0]
大きな言語モデルとエージェントベースのシミュレーションを統合することは、複雑な社会システムを理解するための変換可能性を提供する。
LLM強化社会シミュレーションを体系的に開発するためのアーキテクチャと手法について検討する。
LLMとエージェントベースのシミュレーションを統合することは、研究者や科学者に強力なツールセットを提供すると結論付けている。
論文 参考訳(メタデータ) (2024-05-08T08:57:54Z) - Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents [18.961470450132637]
本稿では、エージェントが文脈に深く関与し、明示的な指示なしに適応的な決定を行う自然現象の重要性を強調する。
我々は,3つの競争シナリオにまたがる自発的な協力を探究し,協力の段階的出現をシミュレートした。
論文 参考訳(メタデータ) (2024-02-19T18:00:53Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
LLMベースのエージェントフレームワークを提案し,実際のユーザ動作をシミュレートするサンドボックス環境を設計する。
実験結果から,本手法のシミュレーション行動は実人の行動に非常に近いことが判明した。
論文 参考訳(メタデータ) (2023-06-05T02:58:35Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
AIシステムにおける社会的アライメントは、確立された社会的価値に応じてこれらのモデルが振舞うことを保証することを目的としている。
現在の言語モデル(LM)は、トレーニングコーパスを独立して厳格に複製するように訓練されている。
本研究は,シミュレートされた社会的相互作用からLMを学習することのできる,新しい学習パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-26T14:17:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。