論文の概要: Semantically Encoding Activity Labels for Context-Aware Human Activity Recognition
- arxiv url: http://arxiv.org/abs/2504.07916v1
- Date: Thu, 10 Apr 2025 17:30:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:19:52.169354
- Title: Semantically Encoding Activity Labels for Context-Aware Human Activity Recognition
- Title(参考訳): 文脈認識型人間の活動認識のための意味的行動ラベルの符号化
- Authors: Wen Ge, Guanyi Mou, Emmanuel O. Agu, Kyumin Lee,
- Abstract要約: LMを利用してCA-HAR活動ラベルを符号化し,意味的関係を捉えるSEALを提案する。
我々の研究は、より高度なLMをCA-HARタスクに統合する新たな可能性を開く。
- 参考スコア(独自算出の注目度): 2.8132886759540146
- License:
- Abstract: Prior work has primarily formulated CA-HAR as a multi-label classification problem, where model inputs are time-series sensor data and target labels are binary encodings representing whether a given activity or context occurs. These CA-HAR methods either predicted each label independently or manually imposed relationships using graphs. However, both strategies often neglect an essential aspect: activity labels have rich semantic relationships. For instance, walking, jogging, and running activities share similar movement patterns but differ in pace and intensity, indicating that they are semantically related. Consequently, prior CA-HAR methods often struggled to accurately capture these inherent and nuanced relationships, particularly on datasets with noisy labels typically used for CA-HAR or situations where the ideal sensor type is unavailable (e.g., recognizing speech without audio sensors). To address this limitation, we propose SEAL, which leverage LMs to encode CA-HAR activity labels to capture semantic relationships. LMs generate vector embeddings that preserve rich semantic information from natural language. Our SEAL approach encodes input-time series sensor data from smart devices and their associated activity and context labels (text) as vector embeddings. During training, SEAL aligns the sensor data representations with their corresponding activity/context label embeddings in a shared embedding space. At inference time, SEAL performs a similarity search, returning the CA-HAR label with the embedding representation closest to the input data. Although LMs have been widely explored in other domains, surprisingly, their potential in CA-HAR has been underexplored, making our approach a novel contribution to the field. Our research opens up new possibilities for integrating more advanced LMs into CA-HAR tasks.
- Abstract(参考訳): モデル入力は時系列センサデータであり、ターゲットラベルは与えられた活動や状況が生じたかどうかを表すバイナリエンコーディングである。
これらのCA-HAR法はそれぞれのラベルを独立して予測するか、グラフを使って手動で関係を課す。
しかし、どちらの戦略も重要な側面を無視することが多い。
例えば、歩行、ジョギング、ランニングといった活動は、同様の動きパターンを共有しているが、歩数や強さは異なり、意味的に関連していることを示している。
そのため、従来のCA-HAR法は、特にCA-HARで一般的に使われているノイズラベルを持つデータセットや、理想的なセンサタイプが利用できない状況(例えば、音声センサなしで音声を認識する)において、これらの固有かつニュアンスな関係を正確に捉えるのに苦労した。
この制限に対処するために, LMを利用してCA-HARアクティビティラベルを符号化し, 意味的関係を捉えるSEALを提案する。
LMは、自然言語から豊富な意味情報を保持するベクトル埋め込みを生成する。
我々のSEALアプローチは、スマートデバイスとその関連アクティビティとコンテキストラベル(テキスト)をベクトル埋め込みとして、入力時系列センサデータをエンコードする。
トレーニング中、SEALはセンサーデータ表現と対応するアクティビティ/コンテキストラベルの埋め込みを共有埋め込み空間に配置する。
推測時、SEALは類似検索を行い、入力データに最も近い埋め込み表現でCA-HARラベルを返す。
LMは、他の領域で広く研究されているが、驚くべきことに、CA-HARにおけるそのポテンシャルは過小評価されており、我々のアプローチはこの分野に新しい貢献をもたらしている。
我々の研究は、より高度なLMをCA-HARタスクに統合する新たな可能性を開く。
関連論文リスト
- CoA: Chain-of-Action for Generative Semantic Labels [5.016605351534376]
CoA(Chain-of-Action)メソッドは、画像の文脈的に関連する特徴に沿ったラベルを生成する。
CoAは、豊かで価値のある文脈情報が推論時の生成性能を改善するという観察に基づいて設計されている。
論文 参考訳(メタデータ) (2024-11-26T13:09:14Z) - Language-centered Human Activity Recognition [8.925867647929088]
Inertial Measurement Unit(IMU)センサーを用いたHAR(Human Activity Recognition)は、医療、安全、産業生産における応用において重要である。
アクティビティパターン、デバイスタイプ、センサー配置のバリエーションは、データセット間の分散ギャップを生成する。
本稿では,センサの読み書きとアクティビティラベルのセマンティック解釈を生成するシステムであるLanHARを提案する。
論文 参考訳(メタデータ) (2024-09-12T22:57:29Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
モデル学習プロセスにおける自己監督型学習(SSL)と新しい自己監督型関係関係(R2)分類タスクの設計
テキスト分類とR2分類を最適化対象として扱うテキスト分類のための関係学習ネットワーク(R2-Net)の関係について検討する。
ラベルセマンティックラーニングのためのマルチアスペクト記述を得るためのWordNetからの外部知識。
論文 参考訳(メタデータ) (2023-06-15T02:19:34Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - HAR-GCNN: Deep Graph CNNs for Human Activity Recognition From Highly
Unlabeled Mobile Sensor Data [61.79595926825511]
正確な活動ラベルを含むバランスのとれたデータセットを取得するには、人間が正しく注釈を付け、リアルタイムで被験者の通常の活動に干渉する必要がある。
本研究では,HAR-GCCNモデルを提案する。HAR-GCCNは,時系列に隣接したセンサ測定の相関を利用して,不特定活動の正確なラベルを予測する。
Har-GCCNは、これまで使用されていたベースライン手法と比較して優れたパフォーマンスを示し、分類精度を25%改善し、異なるデータセットで最大68%向上した。
論文 参考訳(メタデータ) (2022-03-07T01:23:46Z) - Using Language Model to Bootstrap Human Activity Recognition Ambient
Sensors Based in Smart Homes [2.336163487623381]
本稿では,活動系列分類タスクにおけるLSTMに基づく構造向上のための2つの自然言語処理手法を提案する。
以上の結果から,センサ組織マップなどの有用な情報が得られることが示唆された。
我々のテストでは、埋め込みはターゲットと異なるデータセットで事前トレーニング可能であり、転送学習を可能にしている。
論文 参考訳(メタデータ) (2021-11-23T21:21:14Z) - R$^2$-Net: Relation of Relation Learning Network for Sentence Semantic
Matching [58.72111690643359]
文意味マッチングのための関係学習ネットワーク(R2-Net)を提案する。
最初にBERTを使用して、グローバルな視点から入力文をエンコードします。
次に、cnnベースのエンコーダは、ローカルな視点からキーワードやフレーズ情報をキャプチャするように設計されている。
関係情報抽出にラベルを十分に活用するために,関係分類タスクの自己教師付き関係性を導入する。
論文 参考訳(メタデータ) (2020-12-16T13:11:30Z) - Knowledge-Guided Multi-Label Few-Shot Learning for General Image
Recognition [75.44233392355711]
KGGRフレームワークは、ディープニューラルネットワークと統計ラベル相関の事前知識を利用する。
まず、統計ラベルの共起に基づいて異なるラベルを相関させる構造化知識グラフを構築する。
次に、ラベルセマンティクスを導入し、学習セマンティクス固有の特徴をガイドする。
グラフノードの相互作用を探索するためにグラフ伝搬ネットワークを利用する。
論文 参考訳(メタデータ) (2020-09-20T15:05:29Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z) - Sequential Weakly Labeled Multi-Activity Localization and Recognition on
Wearable Sensors using Recurrent Attention Networks [13.64024154785943]
本稿では,逐次的にラベル付けされたマルチアクティビティ認識と位置情報タスクを処理するために,RAN(Recurrent attention network)を提案する。
我々のRANモデルは、粗粒度シーケンシャルな弱いラベルからマルチアクティビティータイプを同時に推測することができる。
手動ラベリングの負担を大幅に軽減する。
論文 参考訳(メタデータ) (2020-04-13T04:57:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。