論文の概要: Large-Scale Analysis of Online Questions Related to Opioid Use Disorder on Reddit
- arxiv url: http://arxiv.org/abs/2504.08044v1
- Date: Thu, 10 Apr 2025 18:02:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-22 00:45:15.517822
- Title: Large-Scale Analysis of Online Questions Related to Opioid Use Disorder on Reddit
- Title(参考訳): Redditにおけるオピオイド使用障害に関連するオンライン質問の大規模分析
- Authors: Tanmay Laud, Akadia Kacha-Ochana, Steven A. Sumner, Vikram Krishnasamy, Royal Law, Lyna Schieber, Munmun De Choudhury, Mai ElSherief,
- Abstract要約: オピオイド使用障害(Opioid use disorder, OUD)は、個人の健康や公衆衛生に影響を及ぼす主要な健康問題である。
さまざまなソーシャルメディアプラットフォーム上で、リカバリとサポートのためのオンラインコミュニティが形成された。
我々は,RedditにおけるOUD関連談話の文脈で質問される自然言語質問について検討した。
- 参考スコア(独自算出の注目度): 13.075510201220274
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Opioid use disorder (OUD) is a leading health problem that affects individual well-being as well as general public health. Due to a variety of reasons, including the stigma faced by people using opioids, online communities for recovery and support were formed on different social media platforms. In these communities, people share their experiences and solicit information by asking questions to learn about opioid use and recovery. However, these communities do not always contain clinically verified information. In this paper, we study natural language questions asked in the context of OUD-related discourse on Reddit. We adopt transformer-based question detection along with hierarchical clustering across 19 subreddits to identify six coarse-grained categories and 69 fine-grained categories of OUD-related questions. Our analysis uncovers ten areas of information seeking from Reddit users in the context of OUD: drug sales, specific drug-related questions, OUD treatment, drug uses, side effects, withdrawal, lifestyle, drug testing, pain management and others, during the study period of 2018-2021. Our work provides a major step in improving the understanding of OUD-related questions people ask unobtrusively on Reddit. We finally discuss technological interventions and public health harm reduction techniques based on the topics of these questions.
- Abstract(参考訳): オピオイド使用障害(Opioid use disorder, OUD)は、個人の健康や公衆衛生に影響を及ぼす主要な健康問題である。
オピオイドを使用する人々が直面する汚名など、さまざまな理由から、さまざまなソーシャルメディアプラットフォーム上でリカバリとサポートのためのオンラインコミュニティが形成された。
これらのコミュニティでは、オピオイドの使用と回復について学ぶために質問することで、経験を共有し、情報を求める。
しかし、これらのコミュニティは必ずしも臨床的に検証された情報を含んでいない。
本稿では,Reddit 上での OUD 関連談話の文脈で質問される自然言語質問について検討する。
OUD関連質問の6つの粗粒度カテゴリと69の細粒度カテゴリを識別するために、トランスフォーマーベースの質問検出と、19のサブレディットにわたる階層的クラスタリングを採用する。
われわれの分析では、2018-2021年の調査期間中のRedditユーザーから、薬物販売、特定の薬物関連質問、OUD治療、薬物使用、副作用、離脱、ライフスタイル、薬物検査、痛み管理など、10分野の情報を抽出した。
私たちの研究は、Redditで不当に質問するOUD関連の質問に対する理解を改善するための大きなステップを提供します。
本稿では,これらの課題をテーマとした技術介入と公衆衛生被害軽減技術について論じる。
関連論文リスト
- Detection of Opioid Users from Reddit Posts via an Attention-based Bidirectional Recurrent Neural Network [11.491225833044021]
我々は、Redditでオピオイドユーザーを特定する機械学習の最近の進歩を活用している。
1ヶ月で3つのサブレディットに投稿した1000人以上のユーザーからの投稿が収集された。
我々は,オピオイドユーザを特定するために,注目に基づく双方向長短メモリモデルを適用した。
論文 参考訳(メタデータ) (2024-02-09T22:12:20Z) - Identifying Self-Disclosures of Use, Misuse and Addiction in Community-based Social Media Posts [26.161892748901252]
我々は,オピオイド使用の6つの異なる位相をラベル付けした,様々なサブレディットからの2500オピオイド関連ポストのコーパスを提示する。
すべての投稿で、私たちは、アノテーションの品質とモデル開発の両方において、スパンレベルの説明を注釈付けし、彼らの役割を決定的に研究します。
論文 参考訳(メタデータ) (2023-11-15T16:05:55Z) - "Can We Detect Substance Use Disorder?": Knowledge and Time Aware
Classification on Social Media from Darkweb [0.08388591755871731]
本研究は,オピオイドを暗号市場上場を通じて販売するソーシャルメディア上での物質使用状況を分析した。
我々は、薬物乱用オントロジー、最先端のディープラーニング、知識を意識したBERTベースのモデルを用いて、感情と感情を生成する。
我々は、暗号市場データをクロールして、フェンタニル、フェンタニル類縁体、その他の新しい合成オピオイドの抽出に利用した方法について論じる。
論文 参考訳(メタデータ) (2023-04-20T17:47:13Z) - Knowledge-Driven New Drug Recommendation [88.35607943144261]
既存の薬物と新薬のギャップを埋めるために, 薬物依存型マルチフェノタイプ数発学習機を開発した。
EDGEは外部薬効知識ベースを用いて偽陰性監視信号を除去する。
その結果, EDGEは, ROC-AUCスコアよりも7.3%向上していることがわかった。
論文 参考訳(メタデータ) (2022-10-11T16:07:52Z) - Medical Question Understanding and Answering with Knowledge Grounding
and Semantic Self-Supervision [53.692793122749414]
本稿では,知識基盤とセマンティック・セルフスーパービジョンを備えた医療質問理解・回答システムについて紹介する。
我々のシステムは、まず、教師付き要約損失を用いて、長い医学的、ユーザによる質問を要約するパイプラインである。
システムはまず、信頼された医療知識ベースから要約されたユーザ質問とFAQとをマッチングし、対応する回答文書から一定の数の関連文を検索する。
論文 参考訳(メタデータ) (2022-09-30T08:20:32Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
世界保健機関(WHO)によると、約4億5000万人が影響を受ける。
うつ病、不安症、双極性障害、ADHD、PTSDなどの精神疾患。
本研究では、Redditプラットフォーム上の非構造化ユーザデータを分析し、うつ病、不安、双極性障害、ADHD、PTSDの5つの一般的な精神疾患を分類する。
論文 参考訳(メタデータ) (2022-07-03T11:33:52Z) - eDarkTrends: Harnessing Social Media Trends in Substance use disorders
for Opioid Listings on Cryptomarket [10.220809005199781]
本研究は,ソーシャルメディア上で,オピオイドが仮想通貨市場で販売されている場合の薬物乱用記事を分析した。
我々は、薬物乱用オントロジー、最先端のディープラーニング、およびBERTベースのモデルを使用して、ソーシャルメディア投稿に対する感情と感情を生成する。
時間的介入が必要なオピオイド症例の分離を支援するため, 政策形成に有効であると考えられた。
論文 参考訳(メタデータ) (2021-03-29T16:58:26Z) - Patterns of Routes of Administration and Drug Tampering for Nonmedical
Opioid Consumption: Data Mining and Content Analysis of Reddit Discussions [0.0]
我々は、半自動情報検索アルゴリズムを用いて、非医療オピオイド消費について議論するサブレディットを同定した。
我々は,物質や投与経路の選好をモデル化し,その頻度と時間的展開を推定した。
フェンタニルパッチを噛んだり、ブプレノルフィンを舌下から溶かすなどの乱用行動の証拠が発見された。
論文 参考訳(メタデータ) (2021-02-22T18:14:48Z) - Where's the Question? A Multi-channel Deep Convolutional Neural Network
for Question Identification in Textual Data [83.89578557287658]
本稿では,実際の質問を分離する目的で,新しい多チャンネル深層畳み込みニューラルネットワークアーキテクチャであるQuest-CNNを提案する。
提案するニューラルネットワークと他のディープニューラルネットワークの総合的な性能比較分析を行った。
提案したQuest-CNNは、透析ケア設定におけるデータエントリレビュー対話のデータセットと一般的なドメインデータセットの両方において、最高のF1スコアを達成した。
論文 参考訳(メタデータ) (2020-10-15T15:11:22Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
ユーザの健康状態の重症度を評価するために,テキストコンテンツとコンテキスト情報の両方をモデル化する多視点学習フレームワークを提案する。
多様なNLUビューは、ユーザの健康を評価するために、タスクと個々の疾患の両方に効果を示す。
論文 参考訳(メタデータ) (2020-09-21T03:45:14Z) - Computational Support for Substance Use Disorder Prevention, Detection,
Treatment, and Recovery [62.9980747784214]
物質使用障害には、アルコール、オピオイド、マリファナ、メタンフェタミンの誤用が含まれる。
成人12人中1人が薬物使用障害を患っている。
全米薬物乱用協会(National Institute on Drug Abuse)は、SUDが年間5200億ドルの費用を負担していると推計している。
論文 参考訳(メタデータ) (2020-06-23T18:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。