Testing bath correlation functions for open quantum dynamics simulations
- URL: http://arxiv.org/abs/2504.08068v1
- Date: Thu, 10 Apr 2025 18:48:56 GMT
- Title: Testing bath correlation functions for open quantum dynamics simulations
- Authors: Masaaki Tokieda,
- Abstract summary: Bath correlation function (BCF) is crucial for accurate simulations of thermalization in open quantum systems.<n>We propose a practical and rigorous testing framework to assess the validity of approximate BCFs in open quantum dynamics simulations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate simulations of thermalization in open quantum systems require a reliable representation of the bath correlation function (BCF). Numerical approaches, such as the hierarchical equations of motion and the pseudomode method, inherently approximate the BCF using a finite set of functions, which can impact simulation accuracy. In this work, we propose a practical and rigorous testing framework to assess the validity of approximate BCFs in open quantum dynamics simulations. Our approach employs a harmonic oscillator system, where the dynamics can be benchmarked against known exact solutions. To enable practical testing, we make two key methodological advancements. First, we develop numerical techniques to evaluate these exact solutions efficiently across a wide range of BCFs for broad applicability. Second, we introduce a moment-based state representation that significantly simplifies computations by exploiting the Gaussian nature of the system. Application to a two-spin system demonstrates that our testing procedure yields reliable error estimates for thermalization simulations. Using this methodology, we assess the performance of recently proposed BCF construction methods, highlighting both their strengths and a notable challenge posed by sub-Ohmic spectral densities at finite temperatures.
Related papers
- Spectral Densities, Structured Noise and Ensemble Averaging within Open Quantum Dynamics [0.0]
We present advances for the Numerical Integration of Schr"odinger Equation (NISE)
We introduce a modified ensemble-averaging procedure that improves the long-time behavior of the thermalized variant of the NISE scheme.
We demonstrate how to use the NISE in conjunction with (highly) structured spectral densities by utilizing a noise generating algorithm for arbitrary structured noise.
arXiv Detail & Related papers (2024-10-05T22:00:19Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Simulating Feedback Cooling of Incoherent Quantum Mixtures [0.0]
We develop a new approach for efficient and scalable simulations of measurement and control of quantum systems.
We benchmark against existing particle-filter methods by simulating measurement based feedback cooling in a two-mode system.
We demonstrate through the first successful simulation of measurement-based feedback cooling of an incoherent quasi-1D thermal ensemble to quantum degeneracy.
arXiv Detail & Related papers (2024-08-30T08:25:01Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Aspects of scaling and scalability for flow-based sampling of lattice
QCD [137.23107300589385]
Recent applications of machine-learned normalizing flows to sampling in lattice field theory suggest that such methods may be able to mitigate critical slowing down and topological freezing.
It remains to be determined whether they can be applied to state-of-the-art lattice quantum chromodynamics calculations.
arXiv Detail & Related papers (2022-11-14T17:07:37Z) - Efficient low temperature simulations for fermionic reservoirs with the
hierarchical equations of motion method: Application to the Anderson impurity
model [0.0]
In this work, we employ the barycentric representation to approximate the Fermi function and hybridization functions in the frequency domain.
The new method, by approxing these functions with optimized rational decomposition, greatly reduces the number of basis functions in decomposing the reservoir correlation functions.
We demonstrate the efficiency, accuracy, and long-time stability of the new decomposition scheme by applying it to the Anderson impurity model (AIM) in the low-temperature regime.
arXiv Detail & Related papers (2022-11-08T08:46:23Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Benchmarking a novel efficient numerical method for localized 1D
Fermi-Hubbard systems on a quantum simulator [0.0]
We show that a quantum simulator can be used to in-effect solve for the dynamics of a many-body system.
We use a neutral-atom Fermi-Hubbard quantum simulator with $L_textexpsimeq290$ lattice sites to benchmark its performance.
We derive a simple prediction of the behaviour of interacting Bloch oscillations for spin-imbalanced Fermi-Hubbard systems.
arXiv Detail & Related papers (2021-05-13T16:03:11Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.