Spectral Densities, Structured Noise and Ensemble Averaging within Open Quantum Dynamics
- URL: http://arxiv.org/abs/2410.04294v1
- Date: Sat, 5 Oct 2024 22:00:19 GMT
- Title: Spectral Densities, Structured Noise and Ensemble Averaging within Open Quantum Dynamics
- Authors: Yannick Marcel Holtkamp, Emiliano Godinez-Ramirez, Ulrich Kleinekathöfer,
- Abstract summary: We present advances for the Numerical Integration of Schr"odinger Equation (NISE)
We introduce a modified ensemble-averaging procedure that improves the long-time behavior of the thermalized variant of the NISE scheme.
We demonstrate how to use the NISE in conjunction with (highly) structured spectral densities by utilizing a noise generating algorithm for arbitrary structured noise.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Although recent advances in simulating open quantum systems have lead to significant progress, the applicability of numerically exact methods is still restricted to rather small systems. Hence, more approximate methods remain relevant due to their computational efficiency, enabling simulations of larger systems over extended timescales. In this study, we present advances for one such method, namely the Numerical Integration of Schr\"odinger Equation (NISE). Firstly, we introduce a modified ensemble-averaging procedure that improves the long-time behavior of the thermalized variant of the NISE scheme, termed Thermalized NISE. Secondly, we demonstrate how to use the NISE in conjunction with (highly) structured spectral densities by utilizing a noise generating algorithm for arbitrary structured noise. This algorithm also serves as a tool for establishing best practices in determining spectral densities from excited state calculations along molecular dynamics or quantum mechanics/molecular mechanics trajectories. Finally, we assess the ability of the NISE approach to calculate absorption spectra and demonstrate the utility of the proposed modifications by determining population dynamics.
Related papers
- Momentum Particle Maximum Likelihood [2.4561590439700076]
We propose an analogous dynamical-systems-inspired approach to minimizing the free energy functional.
By discretizing the system, we obtain a practical algorithm for Maximum likelihood estimation in latent variable models.
The algorithm outperforms existing particle methods in numerical experiments and compares favourably with other MLE algorithms.
arXiv Detail & Related papers (2023-12-12T14:53:18Z) - Efficient Classical Shadow Tomography through Many-body Localization Dynamics [4.923287660970805]
We introduce an alternative approach founded on the dynamics of many-body localization.
We demonstrate that our scheme achieves remarkable efficiency comparable to shallow circuits.
arXiv Detail & Related papers (2023-09-03T19:50:28Z) - Optimized trajectory unraveling for classical simulation of noisy
quantum dynamics [4.772237365196053]
We show that for an arbitrary decoherence channel, one can optimize the unraveling scheme to lower the threshold for entanglement phase transition.
We also present a algorithm that adaptively optimize the unraveling basis for given noise channels.
We assess the possibility of using a quasi-local unraveling to efficiently simulate open systems with an arbitrarily small but finite decoherence rate.
arXiv Detail & Related papers (2023-06-29T17:59:01Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - An efficient adaptive variational quantum solver of the Schrodinger
equation based on reduced density matrices [8.24048506727803]
We present an efficient adaptive variational quantum solver of the Schrodinger equation based on ADAPT-VQE.
This new algorithm is quite suitable for quantum simulations of chemical systems on near-term noisy intermediate-scale hardware.
arXiv Detail & Related papers (2020-12-13T12:22:41Z) - Microcanonical and finite temperature ab initio molecular dynamics
simulations on quantum computers [0.0]
Ab initio molecular dynamics (AIMD) is a powerful tool to predict properties of molecular and condensed matter systems.
We provide solutions for the alleviation of the statistical noise associated to the measurements of the expectation values of energies and forces.
We also propose a Langevin dynamics algorithm for the simulation of canonical, i.e., constant temperature, dynamics.
arXiv Detail & Related papers (2020-08-18T20:24:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.