Benchmarking Suite for Synthetic Aperture Radar Imagery Anomaly Detection (SARIAD) Algorithms
- URL: http://arxiv.org/abs/2504.08115v1
- Date: Thu, 10 Apr 2025 20:31:25 GMT
- Title: Benchmarking Suite for Synthetic Aperture Radar Imagery Anomaly Detection (SARIAD) Algorithms
- Authors: Lucian Chauvina, Somil Guptac, Angelina Ibarrac, Joshua Peeples,
- Abstract summary: Anomaly detection is a key research challenge in computer vision and machine learning.<n>In radar imaging, specifically synthetic aperture radar (SAR), anomaly detection can be used for the classification, detection, and segmentation of objects of interest.<n>SARIAD provides a comprehensive suite of algorithms and datasets for assessing and developing anomaly detection approaches on SAR imagery.
- Score: 0.3124884279860061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection is a key research challenge in computer vision and machine learning with applications in many fields from quality control to radar imaging. In radar imaging, specifically synthetic aperture radar (SAR), anomaly detection can be used for the classification, detection, and segmentation of objects of interest. However, there is no method for developing and benchmarking these methods on SAR imagery. To address this issue, we introduce SAR imagery anomaly detection (SARIAD). In conjunction with Anomalib, a deep-learning library for anomaly detection, SARIAD provides a comprehensive suite of algorithms and datasets for assessing and developing anomaly detection approaches on SAR imagery. SARIAD specifically integrates multiple SAR datasets along with tools to effectively apply various anomaly detection algorithms to SAR imagery. Several anomaly detection metrics and visualizations are available. Overall, SARIAD acts as a central package for benchmarking SAR models and datasets to allow for reproducible research in the field of anomaly detection in SAR imagery. This package is publicly available: https://github.com/Advanced-Vision-and-Learning-Lab/SARIAD.
Related papers
- Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.
We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.
Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - RAD: A Comprehensive Dataset for Benchmarking the Robustness of Image Anomaly Detection [4.231702796492545]
This study introduces a Robust Anomaly Detection dataset with free views, uneven illuminations, and blurry collections.
RAD aims to identify foreign objects on working platforms as anomalies.
We assess and analyze 11 state-of-the-art unsupervised and zero-shot methods on RAD.
arXiv Detail & Related papers (2024-06-11T11:39:44Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.<n> equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.<n>Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - SARDet-100K: Towards Open-Source Benchmark and ToolKit for Large-Scale SAR Object Detection [79.23689506129733]
We establish a new benchmark dataset and an open-source method for large-scale SAR object detection.
Our dataset, SARDet-100K, is a result of intense surveying, collecting, and standardizing 10 existing SAR detection datasets.
To the best of our knowledge, SARDet-100K is the first COCO-level large-scale multi-class SAR object detection dataset ever created.
arXiv Detail & Related papers (2024-03-11T09:20:40Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Deep Learning-Based Anomaly Detection in Synthetic Aperture Radar
Imaging [11.12267144061017]
Our approach considers anomalies as abnormal patterns that deviate from their surroundings but without any prior knowledge of their characteristics.
Our proposed method aims to address these issues through a self-supervised algorithm.
Experiments are performed to show the advantages of our method compared to the conventional Reed-Xiaoli algorithm.
arXiv Detail & Related papers (2022-10-28T10:22:29Z) - Self-Calibrating Anomaly and Change Detection for Autonomous Inspection
Robots [0.07366405857677225]
A visual anomaly or change detection algorithm identifies regions of an image that differ from a reference image or dataset.
We propose a comprehensive deep learning framework for detecting anomalies and changes in a priori unknown environments.
arXiv Detail & Related papers (2022-08-26T09:52:12Z) - Autoregressive Model for Multi-Pass SAR Change Detection Based on Image
Stacks [0.0]
Change detection is an important synthetic aperture radar (SAR) application, usually used to detect changes on the ground scene measurements in different moments in time.
In this study, image stack information can be treated as a data series over time and can be modeled by autoregressive (AR) models.
Applying AR model for each pixel position in the image stack, we obtained an estimated image of the ground scene which can be used as a reference image.
arXiv Detail & Related papers (2022-06-05T21:46:11Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
In this paper, we explore the possibility of achieving a more accurate depth estimation by fusing monocular images and Radar points using a deep neural network.
We find that the noise existing in Radar measurements is one of the main key reasons that prevents one from applying the existing fusion methods.
The experiments are conducted on the nuScenes dataset, which is one of the first datasets which features Camera, Radar, and LiDAR recordings in diverse scenes and weather conditions.
arXiv Detail & Related papers (2020-09-30T19:01:33Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
Deep learning algorithm with self-supervision is proposed in this paper: SAR2SAR.
The strategy to adapt it to SAR despeckling is presented, based on a compensation of temporal changes and a loss function adapted to the statistics of speckle.
Results on real images are discussed, to show the potential of the proposed algorithm.
arXiv Detail & Related papers (2020-06-26T15:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.