SynthFM: Training Modality-agnostic Foundation Models for Medical Image Segmentation without Real Medical Data
- URL: http://arxiv.org/abs/2504.08177v1
- Date: Fri, 11 Apr 2025 00:14:28 GMT
- Title: SynthFM: Training Modality-agnostic Foundation Models for Medical Image Segmentation without Real Medical Data
- Authors: Sourya Sengupta, Satrajit Chakrabarty, Keerthi Sravan Ravi, Gopal Avinash, Ravi Soni,
- Abstract summary: Foundation models like the Segment Anything Model (SAM) excel in zero-shot segmentation for natural images.<n>But they struggle with medical image segmentation due to differences in texture, contrast, and noise.<n>Annotating medical images is costly and requires domain expertise, limiting large-scale annotated data availability.<n>We propose SynthFM, a synthetic data generation framework that mimics the complexities of medical images.
- Score: 0.5242869847419834
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Foundation models like the Segment Anything Model (SAM) excel in zero-shot segmentation for natural images but struggle with medical image segmentation due to differences in texture, contrast, and noise. Annotating medical images is costly and requires domain expertise, limiting large-scale annotated data availability. To address this, we propose SynthFM, a synthetic data generation framework that mimics the complexities of medical images, enabling foundation models to adapt without real medical data. Using SAM's pretrained encoder and training the decoder from scratch on SynthFM's dataset, we evaluated our method on 11 anatomical structures across 9 datasets (CT, MRI, and Ultrasound). SynthFM outperformed zero-shot baselines like SAM and MedSAM, achieving superior results under different prompt settings and on out-of-distribution datasets.
Related papers
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
Latent Drifting enables diffusion models to be conditioned for medical images fitted for the complex task of counterfactual image generation.
We evaluate our method on three public longitudinal benchmark datasets of brain MRI and chest X-rays for counterfactual image generation.
arXiv Detail & Related papers (2024-12-30T01:59:34Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Evaluating Utility of Memory Efficient Medical Image Generation: A Study on Lung Nodule Segmentation [0.0]
This work proposes a memory-efficient patch-wise denoising diffusion probabilistic model (DDPM) for generating synthetic medical images.
Our approach generates high-utility synthetic images with nodule segmentation while efficiently managing memory constraints.
We evaluate the method in two scenarios: training a segmentation model exclusively on synthetic data, and augmenting real-world training data with synthetic images.
arXiv Detail & Related papers (2024-10-16T13:20:57Z) - Improved Baselines with Synchronized Encoding for Universal Medical Image Segmentation [34.08601740109437]
We introduce SyncSAM, which employs a synchronized dual-branch encoder that integrates convolution and Transformer features in a synchronized manner to enhance medical image encoding.<n>SyncSAM achieves state-of-the-art performance on test sets and also exhibits strong zero-shot capabilities on unseen datasets.
arXiv Detail & Related papers (2024-08-19T11:01:00Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - Generalist Vision Foundation Models for Medical Imaging: A Case Study of
Segment Anything Model on Zero-Shot Medical Segmentation [5.547422331445511]
We report quantitative and qualitative zero-shot segmentation results on nine medical image segmentation benchmarks.
Our study indicates the versatility of generalist vision foundation models on medical imaging.
arXiv Detail & Related papers (2023-04-25T08:07:59Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) is a foundation model that is intended to segment user-defined objects of interest in an interactive manner.
We evaluate SAM's ability to segment medical images on a collection of 19 medical imaging datasets from various modalities and anatomies.
arXiv Detail & Related papers (2023-04-20T17:50:18Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
We present a novel concept of shared-context processing for whole slide histopathology images.
AMIGO uses the celluar graph within the tissue to provide a single representation for a patient.
We show that our model is strongly robust to missing information to an extent that it can achieve the same performance with as low as 20% of the data.
arXiv Detail & Related papers (2023-03-01T23:37:45Z) - Negligible effect of brain MRI data preprocessing for tumor segmentation [36.89606202543839]
We conduct experiments on three publicly available datasets and evaluate the effect of different preprocessing steps in deep neural networks.
Our results demonstrate that most popular standardization steps add no value to the network performance.
We suggest that image intensity normalization approaches do not contribute to model accuracy because of the reduction of signal variance with image standardization.
arXiv Detail & Related papers (2022-04-11T17:29:36Z) - Overcoming Barriers to Data Sharing with Medical Image Generation: A
Comprehensive Evaluation [17.983449515155414]
We utilize Generative Adversarial Networks (GANs) to create derived medical imaging datasets consisting entirely of synthetic patient data.
The synthetic images ideally have, in aggregate, similar statistical properties to those of a source dataset but do not contain sensitive personal information.
We measure the synthetic image quality by the performance difference of predictive models trained on either the synthetic or the real dataset.
arXiv Detail & Related papers (2020-11-29T15:41:46Z) - Image Translation for Medical Image Generation -- Ischemic Stroke
Lesions [0.0]
Synthetic databases with annotated pathologies could provide the required amounts of training data.
We train different image-to-image translation models to synthesize magnetic resonance images of brain volumes with and without stroke lesions.
We show that for a small database of only 10 or 50 clinical cases, synthetic data augmentation yields significant improvement.
arXiv Detail & Related papers (2020-10-05T09:12:28Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
We introduce a physics-driven generative approach that consists of two learnable neural modules.
We show that our data synthesis framework improves the downstream segmentation performance on several datasets.
arXiv Detail & Related papers (2020-09-01T19:17:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.