Large language models could be rote learners
- URL: http://arxiv.org/abs/2504.08300v3
- Date: Tue, 15 Apr 2025 03:02:35 GMT
- Title: Large language models could be rote learners
- Authors: Yuyang Xu, Renjun Hu, Haochao Ying, Jian Wu, Xing Shi, Wei Lin,
- Abstract summary: Multiple-choice question (MCQ) benchmarks are widely used for evaluating Large Language Models (LLMs)<n>In this study, we reframe contamination as an inherent aspect of learning and seek to disentangle genuine capability acquisition from superficial memorization.<n>We propose TrinEval, a novel evaluation framework that reformulates MCQs into an alternative trinity format, reducing memorization while preserving knowledge assessment.
- Score: 13.607635426273607
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiple-choice question (MCQ) benchmarks are widely used for evaluating Large Language Models (LLMs), yet their reliability is undermined by benchmark contamination. In this study, we reframe contamination as an inherent aspect of learning and seek to disentangle genuine capability acquisition from superficial memorization in LLM evaluation. First, by analyzing model performance under different memorization conditions, we uncover a counterintuitive trend: LLMs perform worse on memorized MCQs than on non-memorized ones, indicating the coexistence of two distinct learning phenomena, i.e., rote memorization and genuine capability learning. To disentangle them, we propose TrinEval, a novel evaluation framework that reformulates MCQs into an alternative trinity format, reducing memorization while preserving knowledge assessment. Experiments validate TrinEval's effectiveness in reformulation, and its evaluation reveals that common LLMs may memorize by rote 20.5% of knowledge points (in MMLU on average).
Related papers
- ReLearn: Unlearning via Learning for Large Language Models [64.2802606302194]
We propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning.
This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation.
Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output.
arXiv Detail & Related papers (2025-02-16T16:31:00Z) - What Matters in Memorizing and Recalling Facts? Multifaceted Benchmarks for Knowledge Probing in Language Models [15.057992220389604]
Language models often struggle with handling factual knowledge, exhibiting factual hallucination issue.
We introduce a knowledge probing benchmark, BELIEF(ICL), to evaluate the knowledge recall ability of both encoder- and decoder-based pre-trained language models.
We semi-automatically create MyriadLAMA, which has massively diverse prompts.
arXiv Detail & Related papers (2024-06-18T05:11:35Z) - Towards Effective Evaluations and Comparisons for LLM Unlearning Methods [97.2995389188179]
This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - Do LLMs Dream of Ontologies? [13.776194387957617]
Large Models Language (LLMs) have demonstrated remarkable memorization across diverse natural language processing tasks.
This paper investigates the extent to which general-purpose LLMs correctly reproduce concept identifier (ID)-label associations from publicly available resources.
arXiv Detail & Related papers (2024-01-26T15:10:23Z) - MR-GSM8K: A Meta-Reasoning Benchmark for Large Language Model Evaluation [60.65820977963331]
We introduce a novel evaluation paradigm for Large Language Models (LLMs)
This paradigm shifts the emphasis from result-oriented assessments, which often neglect the reasoning process, to a more comprehensive evaluation.
By applying this paradigm in the GSM8K dataset, we have developed the MR-GSM8K benchmark.
arXiv Detail & Related papers (2023-12-28T15:49:43Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
We introduce EpiK-Eval, a novel question-answering benchmark tailored to evaluate LLMs' proficiency in formulating a coherent and consistent knowledge representation from segmented narratives.
We argue that these shortcomings stem from the intrinsic nature of prevailing training objectives.
The findings from this study offer insights for developing more robust and reliable LLMs.
arXiv Detail & Related papers (2023-10-23T21:15:54Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs [54.22416829200613]
Eva-KELLM is a new benchmark for evaluating knowledge editing of large language models.
Experimental results indicate that the current methods for knowledge editing using raw documents are not effective in yielding satisfactory results.
arXiv Detail & Related papers (2023-08-19T09:17:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.